Skip to main content
Log in

Ultrasonic Investigation of the Effect of Carbon Content in Carbon Steels on Bulk Residual Stress

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Formation of residual stress as a result of welding process is a familiar fact, but its relation with material composition is unknown. This study aims to investigate the effect of carbon content on welding residual stress in carbon steels. For this purpose, samples of ultra-low carbon interstitial free, low carbon and medium carbon steels are selected. Welding is performed as a beam on plate in spite of a joining process. Weld grooves are prepared at center of the rectangular samples. Automated submerged arc technique is preferred for welding process in order to ensure same welding parameters at each sample. Ultrasonic sound waves are used to determine residual stress. This non-destructive technique provides bulk residual stress which is average of shear and normal stresses through thickness of a material. A new approach is practiced to verify experimentally determined bulk residual stress with finite element simulation results. The model geometry of numerical analysis is divided into equivalent parts and average of shear and normal stresses is calculated. Non-destructive ultrasonic technique seems to be in good agreement with finite element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Scott, M., Barnett, D., Ilic, D.: The nondestructive determination of residual stress in extruded billets from acoustoelastic measurements. In: IEEE Symposium on Ultrasonics, pp. 265–268 (1979)

  2. Sanderson, R., Shen, Y.: Measurement of residual stress using laser-generated ultrasound. Int J Press. Vessel. Pip. 87(12), 762–765 (2010)

    Article  Google Scholar 

  3. Doxbeck, M., Hussain, M.A., Frankel, J., Abbate, A.: Use of laser generated creeping longitudinal waves to determine residual stresses. In: IEEE Symposium on Ultrasonics, pp. 725–728 (2000)

  4. Uzun, F., Bilge, A.N.: Immersion ultrasonic technique for investigation of total welding residual stress. Procedia Eng. 10(0), 3098–3103 (2011). doi:10.1016/j.proeng.2011.04.513

    Article  Google Scholar 

  5. Murata, Y., Morinaga, M., Hashizume, R., Takami, K., Azuma, T., Tanaka, Y., Ishiguro, T.: Effect of carbon content on the mechanical properties of 10Cr–5W ferritic steels. Mater. Sci. Eng. A 282(1), 251–261 (2000)

    Article  Google Scholar 

  6. Liu, L., Li, Q., Liu, X., Gao, Y., Ren, X., Liao, B., Yang, Q.: Stress field simulation of carburized specimens with different carbon content during quenching process. Mater. Lett. 61(4), 1251–1255 (2007)

    Article  Google Scholar 

  7. Guo, J., Yang, S., Shang, C., Wang, Y., He, X.: Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl containing environment. Corros. Sci. 51(2), 242–251 (2009)

    Article  Google Scholar 

  8. Zhang, C., Xia, Z.-X., Yang, Z.-G., Liu, Z.-H.: Influence of prior austenite deformation and non-metallic inclusions on ferrite formation in low-carbon steels. Int. J. Iron Steel Res. 17(6), 36–42 (2010)

    Article  Google Scholar 

  9. Li, Q., Wang, T.-S., Li, H.-B., Gao, Y.-W., Li, N., Jing, T.-F.: Warm deformation behavior of steels containing carbon of 0. 45 % to 1. 26 % with martensite starting structure. Int. J. Iron Steel Res. 17(5), 34–37 (2010)

    Article  Google Scholar 

  10. Zhang, X., Wang, S., Zhang, Y., Esling, C., Zhao, X., Zuo, L.: Carbon-content dependent effect of magnetic field on austenitic decomposition of steels. J. Magn. Magn. Mater. 324(7), 1385–1390 (2012)

    Article  Google Scholar 

  11. Narayan, S., Rajeshkannan, A.: Influence of carbon content on strain hardening behaviour of sintered plain carbon steel preforms. Int. J. Iron Steel Res. 18(9), 33–40 (2011)

    Article  Google Scholar 

  12. Serajzadeh, S., Taheri, A.K.: An investigation into the effect of carbon on the kinetics of dynamic restoration and flow behavior of carbon steels. Mech. Mater. 35(7), 653–660 (2003)

    Article  Google Scholar 

  13. Itabashi, M., Kawata, K.: Carbon content effect on high-strain-rate tensile properties for carbon steels. Int. J. Impact Eng. 24(2), 117–131 (2000)

    Article  Google Scholar 

  14. Guo, J., Shang, C.-J., Yang, S.-W., Wang, Y., Wang, L.-W., He, X.-L.: Effect of carbon content on mechanical properties and weather resistance of high performance bridge steels. Int. J. Iron Steel Res. 16(6), 63–69 (2009)

    Article  Google Scholar 

  15. Committee AIH: ASM Handbook: Heat Treating, vol 4. Asm Intl, Russell Township (1991)

  16. DuPont, J., Marder, A.: Thermal efficiency of arc welding processes. Weld. J. Incl. Weld. Res. Suppl. 74(12), 406s (1995)

    Google Scholar 

  17. Phani, K.K., Phani, D., Sengupta, A.K.: Estimation of elastic properties of nuclear fuel material using longitudinal ultrasonic velocity—a new approach. J. Nucl. Mater. 366(1—-2), 129–136 (2007). doi:10.1016/j.jnucmat.2006.12.045

    Article  Google Scholar 

  18. Thurston, R.: Wave propagation in fluids and normal solids. Phys. Acoust. 1 (Part A), 1–110 (1964)

  19. Lu, J., James, M., Roy, G.: Handbook of measurement of residual stresses. Fairmont Press, Lilburn (1996)

  20. Hughes, D.S., Kelly, J.: Second-order elastic deformation of solids. Phys. Rev. 92(5), 1145 (1953)

    Article  MATH  Google Scholar 

  21. Murnaghan, F.D.: Finite Deformation of an Elastic Solid. Dover Publications, New York (1967)

  22. Egle, D., Bray, D.: Measurement of acoustoelastic and third-order elastic constants for rail steel. J. Acoust. Soc. Am. 60(3), 741–744 (1976)

    Article  Google Scholar 

  23. Vangi, D.: Stress evaluation by pulse-echo ultrasonic longitudinal wave. Exp. Mech. 41(3), 277–281 (2001)

    Article  Google Scholar 

  24. Hibbitt, H.D., Marcal, P.V.: A numerical, thermo-mechanical model for the welding and subsequent loading of a fabricated structure. Comput. Struct. 3(5), 1145–1174 (1973)

    Article  Google Scholar 

  25. Andersson, B.: Thermal stresses in a submerged-arc welded joint considering phase transformations. J. Eng. Mater. Tech. 100(4), 356–362 (1978)

    Article  Google Scholar 

  26. Shim, Y., Feng, Z., Lee, S., Kim, D., Jaeger, J., Papritan, J., Tsai, C.: Determination of residual stresses in thick-section weldments. Weld. J. 71(9), 305–312 (1992)

    Google Scholar 

  27. Nickell, R.E., Hibbitt, H.D.: Thermal and mechanical analysis of welded structures. Nucl. Eng. Des. 32(1), 110–120 (1975)

    Article  Google Scholar 

  28. Friedman, E.: Analysis of weld puddle distortion and its effect on penetration. Weld. J. 57(6), 161 (1978)

    Google Scholar 

  29. Mahin, K., MacEwen, S., Winters, W.: Evaluation of residual stress distributions in a traveling GTA weld using finite element and experimental techniques. Model. Control Cast. Weld. Process IV:339–350 (1988)

  30. Friedman, E.: Thermomechanical analysis of the welding process using the finite element method. J. Press. Vessel Technol. 97(3), 206–213 (1975)

    Article  Google Scholar 

  31. Mahin, K., Winters, W., Holden, T., Hosbons, R., MacEwen, S.: Prediction and measurement of residual elastic strain distributions in gas tungsten arc welds. Weld. J. 70(9), 245s–260s (1991)

    Google Scholar 

  32. Bae, K., Na, S., Park, D.: A study of mechanical stress relief (MSR) treatment of residual stresses for one-pass submerged arc welding of V-grooved mild steel plate. Proc. Inst. Mech. Eng. Part B 208(3), 217–227 (1994)

  33. Goldak, J., Chakravarti, A., Bibby, M.: A new finite element model for welding heat sources. MTB 15(2), 299–305 (1984). doi:10.1007/BF02667333

    Article  Google Scholar 

  34. ANSYS Release 13, Finite Element Analysis Software Help Document. ANSYS Inc., Pennsylvania (2010)

  35. Kundu. T., Placko, D.: Advanced Ultrasonic Methods for Material and Structure Inspection. Wiley, New York (2013)

  36. Hsu, N.: Acoustical birefringence and the use of ultrasonic waves for experimental stress analysis. Exp. Mech. 14(5), 169–176 (1974). doi:10.1007/BF02323061

    Article  Google Scholar 

  37. Burrascano, P., Callegari, S., Montisci, A., Ricci, M., Versaci, M.: Ultrasonic Nondestructive Evaluation Systems: Industrial Application Issues. Springer International Publishing, New York (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Uzun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzun, F., Bilge, A.N. Ultrasonic Investigation of the Effect of Carbon Content in Carbon Steels on Bulk Residual Stress. J Nondestruct Eval 34, 11 (2015). https://doi.org/10.1007/s10921-015-0284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0284-x

Keywords

Navigation