Skip to main content
Log in

Locating Events Using Time Reversal and Deconvolution: Experimental Application and Analysis

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Time reversal techniques are used in ocean acoustics, medical imaging, seismology, and non-destructive evaluation to backpropagate recorded signals to the source of origin. We demonstrate experimentally a technique which improves the temporal focus achieved at the source location by utilizing deconvolution. One experiment consists of propagating a signal from a transducer within a concrete block to a single receiver on the surface, and then applying time reversal or deconvolution to focus the energy back at the source location. Another two experiments are run to study the robust nature of deconvolution by investigating the effect of changing the stabilization constant used in the deconvolution and the impact multiple sources have upon deconvolutions’ focusing abilities. The results show that we are able to generate an improved temporal focus at the source transducer using deconvolution while maintaining the robust nature of time reversal. Additionally, deconvolution’s costs are negligible due to it being a preprocessing step to the recorded data. The technique can be applied for detailed investigation of the source mechanisms (e.g. cracks) but also for monitoring purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Parvulescu, A., Clay, C.: Reproducibility of signal transmission in the ocean. Radio Electron. Eng. 29, 223–228 (1965)

    Article  Google Scholar 

  2. Fink, M.: Time reversed acoustics. Phys. Today 50(3), 34–40 (1997)

    Article  MathSciNet  Google Scholar 

  3. Anderson, B.E., Griffa, M., Larmat, C., Ulrich, T.J., Johnson, P.A.: Time reversal. Acoust. Today 4(1), 5–16 (2008)

    Article  Google Scholar 

  4. Larmat, C.S., Guyer, R.A., Johnson, P.A.: Time-reversal methods in geophysics. Phys. Today 63(8), 31–35 (2010)

    Article  Google Scholar 

  5. Tanter, M., Thomas, J.-L., Fink, M.: Time reversal and the inverse filter. J. Acoust. Soc. Am. 108, 223–234 (2000)

    Article  Google Scholar 

  6. Tanter, M., Aubry, J.-F., Gerber, J., Thomas, J.-L., Fink, M.: Optimal focusing by spatio-temporal filter. I. Basic principles. J. Acoust. Soc. Am. 110, 37–47 (2001)

    Article  Google Scholar 

  7. Montaldo, G., Tanter, M., Fink, M.: Real time inverse filter focusing through iterative time reversal. J. Acoust. Soc. Am. 115, 768–775 (2004)

    Article  Google Scholar 

  8. Vignon, F., Aubry, J.-F., Saez, A., Tanter, M., Cassereau, D., Montaldo, G., Fink, M.: The Stokes relations linking time reversal and the inverse filter. J. Acoust. Soc. Am. 119, 1335–1346 (2006)

    Article  Google Scholar 

  9. Gallot, T., Catheline, S., Roux, P., Campillo, M.: A passive inverse filter for Green’s function retrieval. J. Acoust. Soc. Am. 131, EL21–EL27 (2011)

  10. Bertaix, V., Garson, J., Quieffin, N., Catheline, S., Derosny, J., Fink, M.: Time-reversal breaking of acoustic waves in a cavity. Am. J. Phys. 72(10), 1308 (2004)

    Article  Google Scholar 

  11. Roux, P., Fink, M.: Time reversal in a waveguide: study of the temporal and spatial focusing. J. Acoust. Soc. Am. 107, 2418–2429 (2000)

    Article  Google Scholar 

  12. Aubry, J.-F., Tanter, M., Gerber, J., Thomas, J.-L., Fink, M.: Optimal focusing by spatio-temporal filter. II. Experiments. Application to focusing through absorbing and reverberating media. J. Acoust. Soc. Am. 110, 48–58 (2001)

    Article  Google Scholar 

  13. Jonsson, B.L.G., Gustafsson, M., Weston, V.H., de Hoop, M.V.: Retrofocusing of acoustic wave fields by iterated time reversal. SIAM J. Appl. Math. 64(6), 1954–1986 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Daniels, R., Heath, R.: Improving on time reversal with MISO precoding. In: Proceedings of the Eighth International Symposium of Wireless Personal Communications Conference, Aalborg, Danmark, pp. VI-124–VI-129 (2005)

  15. Qiu, R.C., Zhou, C., Guo, N., Zhang, J.Q.: Time reversal with MISO for ultrawideband communications: experimental results. IEEE Antennas Wirel. Propag. Lett. 5, 1–5 (2006)

    Article  Google Scholar 

  16. Blomgren, P., Kyritsi, P., Kim, A., Papanicolaou, G.: Spatial focusing and intersymbol interference on multiple-input-single-output time reversal communication systems. IEEE J. Ocean. Eng. 33, 341–355 (2008)

    Article  Google Scholar 

  17. Zhou, C., Guo, N., Qiu, R.C.: Experimental results on multiple-input single-output (MISO) time reversal for UWB systems in an office environment. In: MILCOM’06 Proceedings of the 2006 IEEE Conference on Military Communications, pp. 1299–1304. IEEE Press, Piscataway, NJ (2006)

  18. Zhou, C., Qiu, R.C.: Spatial focusing of time-reversed UWB electromagnetic waves in a hallway environment. In: Proceedings of the Thirty Eighth Symposium on System Theory, pp. 318–322 (2006)

  19. Ulrich, T.J., Douma, J., Anderson, B.E., Snieder, R.: Improving spatio-temporal focusing and source reconstruction through deconvolution. Wave Motion (2014). doi:10.1016/j.wavemoti.2014.10.001

  20. Douma, J., Snieder, R., Fish, A., Sava, P.: Locating a microseismic event using deconvolution. In: Proceedings of the 83rd Annual International Meeting, Society of Exploration Geophysicists (2013)

  21. Douma, J., Snieder, R.: Focusing of elastic waves for microseismic imaging. Geophys. J. Int. 200(1), 390–401 (2015)

  22. Clayton, R., Wiggins, R.: Source shape estimation and deconvolution of teleseismic bodywaves. Geophys. J. R. Astron. Soc. 47, 151–177 (1976)

    Article  Google Scholar 

  23. Wapenaar, K., Broggini, F., Snieder, R.: Creating a virtual source inside a medium from reflection data: heuristic derivation and stationary-phase analysis. Geophys. J. Int. 190, 1020–1024 (2012)

    Article  Google Scholar 

  24. Behura, J., Snieder, R.: Virtual Real Source: source signature estimation using seismic interferometry. Geophysics 78, Q57–Q68 (2013)

  25. Mehta, K., Sheiman, J., Snieder, R., Calvert, R.: Strengthening the virtual-source method for time-lapse monitoring. Geophysics 73, S73–S80 (2008)

    Article  Google Scholar 

  26. Snieder, R., Sheiman, J., Calvert, R.: Equivalence of the virtual-source method and wave-field deconvolution in seismic interferometry. Phys. Rev. E 73, 066620 (2006)

    Article  Google Scholar 

  27. Mehta, K., Snieder, R., Calvert, R., Sheiman, J.: Acquisition geometry requirements for generating virtual-source data. Lead. Edge 27(5), 620–629 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Niederleithinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douma, J., Niederleithinger, E. & Snieder, R. Locating Events Using Time Reversal and Deconvolution: Experimental Application and Analysis. J Nondestruct Eval 34, 2 (2015). https://doi.org/10.1007/s10921-015-0276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0276-x

Keywords

Navigation