Skip to main content
Log in

Elastic Properties Inversion of an Isotropic Plate by Hybrid Particle Swarm-Based-Simulated Annealing Optimization Technique from Leaky Lamb Wave Measurements Using Acoustic Microscopy

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper presents a new method for the inversion of elastic properties of an isotropic thin plate by line-focus acoustic microscopy. Over 10 modes of the leaky Lamb waves of a 380 \(\upmu \)m thick aluminum plate were extracted by the \(V(f\),\(z)\) measurement. The inversion method of hybrid particle swarm-based-simulated annealing (PS-B-SA) optimization induces an objective function dependent on the determinant of the coefficient matrix of the dispersive characteristic equation. PS-B-SA allows considerable flexibility in parametric inversion problem and seeks the global rather than the local minimum. An alternative image display method combined with the objective function will be used to show the dispersion curves and to demonstrate the principles of the PS-B-SA optimization algorithm. The elastic properties (Young’s modulus \(E\), shear modulus \(G\), Poisson’s ratio \(\nu \)) and thickness (2\(h)\) of the specimen are determined by the inversion of the dispersion curves. Inversed parameters by particle swarm optimization algorithm are compared with the PS-B-SA results to show the validity and stability of the hybrid method. Agreement between the inversed material parameters and the reported data is shown to be excellent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kiełczyński, P., Szalewski, M.: An inverse method for determining the elastic properties of thin layers using Love surface waves. Inverse Probl. Sci. Eng. 19, 31–43 (2011)

    Article  MATH  Google Scholar 

  2. Lematre, M., Benmehrez, Y., Bourse, G., Xu, J.W., Ourak, M.: Acoustic microscopy measurement of elastic constants by using an optimization method on measured and calculated SAW velocities: effect of initial cij values on the calculation convergence and influence of the LFI transducer parameters on the determination of the SAW velocity. NDT & E Int. 35, 279–286 (2002)

    Article  Google Scholar 

  3. Karim, M.R., Mal, A.K., Bar-Cohen, Y.: Inversion of leaky Lamb wave data by simplex algorithm. J. Acoust. Soc. Am. 88, 482–491 (1990)

    Article  Google Scholar 

  4. Wilcox, P., Lowe, M., Cawley, P.: Lamb and SH wave transducer arrays for the inspection of large areas of thick plates. AIP Conf. Proc. 509, 1049–1056 (2000)

    Article  Google Scholar 

  5. Zhu, Z.H., Post, M.A., Xu, P.C.: Stress evaluation using ultrasonic interference spectrum of leaky Lamb waves. Exp. Mech. 51, 971–980 (2011)

    Article  Google Scholar 

  6. Rogers, W.P.: Elastic property measurement using Rayleigh-Lamb waves. Res. Nondestruct. Eval. 6, 185–208 (1995)

    Article  Google Scholar 

  7. Gao, W., Glorieux, C., Thoen, J.: Laser ultrasonic study of Lamb waves: determination of the thickness and velocities of a thin plate. Int. J. Eng. Sci. 41, 219–228 (2003)

    Article  Google Scholar 

  8. Castaings, M., Cawley, P.: The generation, propagation, and detection of Lamb waves in plates using air-coupled ultrasonic transducers. J. Acoust. Soc. Am. 100, 3070–3077 (1996)

    Article  Google Scholar 

  9. Kushibiki, J., Chubachi, N.: Material characterization by line-focus-beam acoustic microscope. IEEE Trans. Sonics Ultrasonics 32, 189–212 (1985)

    Article  Google Scholar 

  10. Lee, Y.-C.: Measurements of dispersion curves of leaky Lamb waves using a lens-less line-focus transducer. Ultrasonics 39, 297–306 (2001)

    Article  Google Scholar 

  11. Lee, Y.-C., Ko, S.-P.: Measuring dispersion curves of acoustic waves using PVDF line-focus transducers. NDT & E Int. 34, 191–197 (2001)

    Article  Google Scholar 

  12. Chung, C.-H., Lee, Y.-C.: Broadband poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers for determining elastic constants of coating materials. J. Nondestruct. Eval. 28, 101–110 (2009)

    Article  Google Scholar 

  13. Chung, C.-H., Lee, Y.-C.: An improved weighting method for inversely determining elastic constants of coating layers from dispersion curves of surface acoustic waves. Exp. Mech. 53, 1395–1403 (2013)

  14. Lu, Y., He, C., Song, G., Wu, B., Chung, C.-H., Lee, Y.-C.: Fabrication of broadband poly(vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements of anisotropy of a (100) silicon wafer. Ultrasonics 54, 296–304 (2014)

    Article  Google Scholar 

  15. Honarvar, F., Enjilela, E., Sinclair, A.N.: An alternative method for plotting dispersion curves. Ultrasonics 49, 15–18 (2009)

    Article  Google Scholar 

  16. Chung, C.-H., Lee, Y.-C.: Fabrication of poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers and measurements of elastic constants of thin plates. NDT & E Int. 43, 96–105 (2010)

    Article  Google Scholar 

  17. Nishida, K., Kobayashi, N., Fukao, Y.: Background Lamb waves in the Earth’s atmosphere. Geophys. J. Int. 41, 719–740 (2013)

    Google Scholar 

  18. Zhang, H., Sun, X., Fan, S., Qi, X., Liu, X., Lu, D.: An ultrasonic signal processing technique for extraction of arrival time from Lamb waveforms. In: Huang, D.-S., Wunsch II, D., Levine, D., Jo, K.-H. (eds.) Advanced Intelligent Computing Theories and Applications With Aspects of Theoretical and Methodological Issues, pp. 704–711. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Vaz, A.I.F., Pereira, A.I.P.N., Fernandes, E.M.G.P.: Particle swarm and simulated annealing for multi-global optimization. WSEAS Trans. Inf. Sci. Appl. 2, 534–539 (2005)

    Google Scholar 

  20. Liu, B., Wang, L., Jin, Y.-H., Tang, F., Huang, D.-X.: Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25, 1261–1271 (2005)

    Article  MATH  Google Scholar 

  21. Yuhui, S., Eberhart, R.C.: In: Proceedings of the 1999 Congress on Evolutionary Computation. Empirical study of particle swarm optimization vol. 3, p. 1950 (1999)

  22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. vol. 4, pp. 1942–1948 (1995)

  23. Nayfeh, A.H.: Wave propagation in layered anisotropic media: with applications to composites. North Holland, Amsterdam (1995)

    Google Scholar 

  24. Viktorov, I.A.: Rayleigh and Lamb waves: physical theory and applications. Plenum Press, New York (1967)

    Book  Google Scholar 

  25. Sadati, N., Amraee, T., Ranjbar, A.M.: A global particle swarm-based-simulated annealing optimization technique for under-voltage load shedding problem. Appl. Soft Comput. J. 9, 652–657 (2009)

    Article  Google Scholar 

  26. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks. p. 1942–1948 (1995)

  27. Sun, K., Hong, K., Yuan, L., Shen, Z., Ni, X.: Inversion of functional graded materials elastic properties from ultrasonic lamb wave phase velocity data using genetic algorithm. J. Nondestruct. Eval. 33, 34–42 (2013)

  28. Vishnuvardhan, J., Krishnamurthy, C.V., Balasubramaniam, K.: Blind inversion method using Lamb waves for the complete elastic property characterization of anisotropic plates. J. Acoust. Soc. Am. 125, 761–771 (2009)

    Article  Google Scholar 

  29. Tripathi, P.K., Bandyopadhyay, S., Pal, S.K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf. Sci. 177, 5033–5049 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiang, D., Hsu, N.N., Blessing, G.V.: The design, construction and application of a large aperture lens-less line-focus PVDF transducer. Ultrasonics 34, 641–647 (1996)

    Article  Google Scholar 

  31. Yang, C.-H.: Characterization of piezoelectrics using line-focus transducer. In: Thompson, D., Chimenti, D. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 177–184. Springer, New York (1998)

  32. Alleyne, D., Cawley, P.: A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am. 89, 1159–1168 (1991)

    Article  Google Scholar 

  33. Kushibiki, J., Horii, K., Chubachi, N.: Velocity-measurement of multiple leaky waves on germanium by line-focus-beam acoustic microscope using FFT. Electron. Lett. 19, 404–405 (1983)

    Article  Google Scholar 

  34. Kundu, T.: Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC, Boca Raton (2004)

    Google Scholar 

Download references

Acknowledgments

The work presented in this paper is supported by the national Natural Science Foundation of China (NSFC, No. 11172014 & No. 61271372), and the Key Program of the NSFC (No. 51235001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Cunfu.

Appendix

Appendix

The associated displacement amplitude ratios are now given by:

$$\begin{aligned} \left\{ {\begin{array}{ll} U_q =1 \\ W_1 =\alpha _1 ,\;W_2 =-\frac{1}{\alpha _2 },\;W_3 =\alpha _3 ,\;W_4 =-\frac{1}{\alpha _4 } \\ \end{array}} \right. \end{aligned}$$
(11)

where the \(\alpha _q \) are given by:

$$\begin{aligned} \left\{ {\begin{array}{ll} \alpha _1 =-\alpha _3 =\sqrt{\left( {\frac{c}{C_\mathrm{L} }}\right) ^2-1} \\ \alpha _2 =-\alpha _4 =\sqrt{\left( {\frac{c}{C_\mathrm{T} }}\right) ^2-1} \\ \end{array}} \right. \end{aligned}$$
(12)

The associated stress amplitude ratios are now given by:

$$\begin{aligned} \left\{ {\begin{array}{l} D_{1q} =\lambda +( {C_{33} W_q })\alpha _q \\ D_{2q} =\mu ( {W_q +\alpha _q }) \\ \end{array}} \right. \end{aligned}$$
(13)

where the \(\lambda ,\mu \) are the Lamé constants, and they can be expressed as:

$$\begin{aligned} \left\{ {\begin{array}{l} C_\mathrm{L}^2 =\frac{\lambda +2\mu }{\rho } \\ C_\mathrm{T}^2 =\frac{\mu }{\rho } \\ \end{array}} \right. \end{aligned}$$
(14)

Finally, we will derive the coefficient matrix \(\left[ M \right] _{4\times 4} \):

$$\begin{aligned}&\!\!\!\left[ M \right] _{4\times 4} \nonumber \\&\quad =\left[ {{\begin{array}{*{20}c} {D_{11} \mathrm{e}^{+i\xi h\alpha _1 }} &{} {D_{12} \mathrm{e}^{+i\xi h\alpha _2 }} &{} {D_{13} \mathrm{e}^{+i\xi h\alpha _3 }} &{} {D_{14} \mathrm{e}^{+i\xi h\alpha _4 }} \\ {D_{21} \mathrm{e}^{+i\xi h\alpha _1 }} &{} {D_{22} \mathrm{e}^{+i\xi h\alpha _2 }} &{} {D_{23} \mathrm{e}^{+i\xi h\alpha _3 }} &{} {D_{24} \mathrm{e}^{+i\xi h\alpha _4 }} \\ {D_{11} \mathrm{e}^{-i\xi h\alpha _1 }} &{} {D_{12} \mathrm{e}^{-i\xi h\alpha _2 }} &{} {D_{13} \mathrm{e}^{-i\xi h\alpha _3 }} &{} {D_{14} \mathrm{e}^{-i\xi h\alpha _4 }} \\ {D_{21} \mathrm{e}^{-i\xi h\alpha _1 }} &{} {D_{22} \mathrm{e}^{-i\xi h\alpha _2 }} &{} {D_{23} \mathrm{e}^{-i\xi h\alpha _3 }} &{} {D_{24} \mathrm{e}^{-i\xi h\alpha _4 }} \\ \end{array} }} \right] \nonumber \\ \end{aligned}$$
(15)

The acoustic properties \(C_\mathrm{L} ,C_\mathrm{T} \) are related to the elastic properties \(E,G,\nu \) through:

$$\begin{aligned} {\text {Poisson's ratio}}\,\,\nu =\frac{C_\mathrm{L}^2 -2C_\mathrm{T}^2 }{2( {C_\mathrm{L}^2 -C_\mathrm{T}^2 })}\end{aligned}$$
(16)
$$\begin{aligned} {\text {Shear modulus}}\,\,\,G=\rho C_\mathrm{T}^2\end{aligned}$$
(17)
$$\begin{aligned} {\text {Young's modulus}}\,\,\,E=2G( {1+\nu }) \end{aligned}$$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Cunfu, H., Guorong, S. et al. Elastic Properties Inversion of an Isotropic Plate by Hybrid Particle Swarm-Based-Simulated Annealing Optimization Technique from Leaky Lamb Wave Measurements Using Acoustic Microscopy. J Nondestruct Eval 33, 651–662 (2014). https://doi.org/10.1007/s10921-014-0259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0259-3

Keywords

Navigation