Skip to main content
Log in

Ultrasonic Backscattering in Cubic Polycrystals with Ellipsoidal Grains and Texture

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

An ultrasonic model for backscattering from polycrystalline microstructure is developed for polycrystals with uniaxial texture and elongated cubic crystallites. The uniaxial texture or crystallographic orientation of the grains is described by a modified Gaussian orientation distribution function (ODF) with a texture parameter. Macroscopically such a textured polycrystalline medium exhibits hexagonal symmetry. The preferred texture direction and elongation are independently defined in a global system. The dependence of backscattering coefficients and their directional ratios on both texture and grain anisotropy are discussed. Attenuation coefficients in the high frequency range for arbitrary wave propagation direction are obtained and then the ratios in the three axis directions are studied. The model is compared with experimental data available in the literature for Al rolled alloys and shows good agreement when accounting for both texture and grain anisotropy effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Thompson, R.B., Margetan, F.J., Haldipur, P., Yu, L., Li, A., Panetta, P., Wasan, H.: Scattering of elastic waves in simple and complex polycrystals. Wave Motion 45, 655–674 (2008)

    Article  MATH  Google Scholar 

  2. Thompson, R.B.: Elastic-wave propagation in random polycrystals: fundamentals and application to nondestructive evaluation. In: Fink, M., Kuperman, W.A., Montagner, J.-P., Tourin, A. (eds.) Imaging of Complex Media with Acoustic and Seismic Waves, Topics in Applied Physics, vol. 84, pp. 233–257. Springer, Berlin (2002)

    Chapter  Google Scholar 

  3. Papadakis, E.P.: Ultrasonic attenuation caused by scattering in polycrystalline media. In: Mason, W. (ed.) Physical Acoustics, vol. IV, Part B, pp. 269–328. Academic Press, London (1968)

    Google Scholar 

  4. Guo, Y., Thompson, R.B., Rehbein, D.K., Margetan, F.J., Warchol, M.: The effects of microstructure on the response of aluminum E-127 calibration standards. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE, vol. 18B, pp. 2337–2344. Plenum, New York (1999)

    Google Scholar 

  5. Guo, Y., Thompson, R.B., Margetan, F.J.: Simultaneous measurement of grain size and shape from ultrasonic backscattering measurements made from a single surface. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE, vol. 22B, pp. 1347–1354. American Institute of Physics, New York (2003)

    Google Scholar 

  6. Ahmed, S., Thompson, R.B.: Influence of Columnar microstructure on ultrasonic backscattering. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE, vol. 14A, pp. 1617–1623. Plenum, New York (1999)

    Google Scholar 

  7. Ahmed, S., Thompson, R.B.: Attenuation of ultrasonic waves in cubic metals having elongated, oriented grains. Nondestruct. Test. Eval. 8–9, 525–531 (1992)

    Article  Google Scholar 

  8. Yang, L., Lobkis, O.I., Rokhlin, S.I.: Shape effect of elongated grains on ultrasonic attenuation in polycrystalline materials. Ultrasonics 51 (2011)

  9. Rose, J.H.: Ultrasonic backscattering from microstructure. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE, vol. 10, pp. 1677–1684. Plenum, New York (1991)

    Google Scholar 

  10. Rose, J.H.: Ultrasonic backscattering from polycrystalline aggregates using time-domain linear response theory. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE, vol. 10, pp. 1715–1720. Plenum, New York (1991)

    Google Scholar 

  11. Turner, J.A.: Elastic waves propagation and scattering in heterogeneous, anisotropic media: textured polycrystalline materials. J. Acoust. Soc. Am. 106, 541–552 (1999)

    Article  Google Scholar 

  12. Han, Y.K., Thompson, R.B.: Ultrasonic backscattering in duplex microstructures: theory and application to titanium alloys. Metall. Mater. Trans. A 28A, 91–104 (1997)

    Article  Google Scholar 

  13. Thompson, R.B., Margetan, F.J.: Use of elastodynamic theories in the stochastic description of the effects of microstructure on ultrasonic flaw and noise signals. Wave Motion 36, 347–365 (2002)

    Article  MATH  Google Scholar 

  14. Lobkis, O.I., Rokhlin, S.I.: Characterization of polycrystals with elongated duplex microstructure by inversion of ultrasonic backscattering data. Appl. Phys. Lett. 96(16), 161905 (2010)

    Article  Google Scholar 

  15. Lobkis, O.I., Yang, L., Li, J., Rokhlin, S.I.: Ultrasonic backscattering in polycrystals with elongated single phase and duplex microstructure. Ultrasonics 52, 694–705 (2012)

    Article  Google Scholar 

  16. Ghoshal, G., Turner, J.A., Weaver, R.L.: Wigner distribution of a transducer beam pattern within a multiple scattering formalism for heterogeneous solids. J. Acoust. Soc. Am. 122, 2009–2021 (2007)

    Article  Google Scholar 

  17. Yang, L., Turner, J.A., Li, Z.: Ultrasonic characterization of microstructure evolution during processing. J. Acoust. Soc. Am. 121, 50–59 (2007)

    Article  Google Scholar 

  18. Cho, J.H., Rollett, A.D., Oh, K.H.: Determination of volume fractions of texture components with standard distributions in Euler space. Metall. Mater. Trans. A 35A, 1075–1086 (2004)

    Google Scholar 

  19. Yang, L., Li, J., Lobkis, O.I., Rokhlin, S.I.: Ultrasonic propagation and scattering in duplex microstructures with application to titanium alloys. J. Nondestruct. Eval. 31(3), 270–283 (2012)

    Article  Google Scholar 

  20. Kocks, U.F., Tomé, C.N., Wenk, H.-R., Beaudoin, A.J., Mecking, H.: Texture and Anisotropy. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Weaver, R.L.: Diffusivity of ultrasound in polycrystals. J. Mech. Phys. Solids 38, 55–86 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stanke, F.E., Kino, G.S.: A unified theory for elastic wave propagation in polycrystalline materials. J. Acoust. Soc. Am. 75, 665–681 (1984)

    Article  MATH  Google Scholar 

  23. Degtyar, A.D., Rokhlin, S.I.: Comparison of elastic constant determination in anisotropic materials from ultrasonic phase and group velocity data. J. Acoust. Soc. Am. 102(6), 3458–3466 (1997)

    Article  Google Scholar 

  24. Rokhlin, S.I., Chimenti, D.E., Nagy, P.B.: Physical Ultrasonics of Composites. Oxford University Press, London (2011), pp. 75–80

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the AFOSR under contract FA9550-09-1-0452.

The authors appreciate fruitful discussions with Dr. Oleg Lobkis and Jia Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Rokhlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Rokhlin, S.I. Ultrasonic Backscattering in Cubic Polycrystals with Ellipsoidal Grains and Texture. J Nondestruct Eval 32, 142–155 (2013). https://doi.org/10.1007/s10921-012-0167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-012-0167-3

Keywords

Navigation