Skip to main content

Advertisement

Log in

Artificial Neural Network to Predict Skeletal Metastasis in Patients with Prostate Cancer

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The application of an artificial neural network (ANN) in prediction of outcomes using clinical data is being increasingly used. The aim of this study was to assess whether an ANN model is a useful tool for predicting skeletal metastasis in patients with prostate cancer. Consecutive patients with prostate cancer who underwent the technetium-99m methylene diphosphate (Tc-99m MDP) whole body bone scintigraphies were retrospectively analyzed between 2001 and 2005. The predictors were the patient’s age and radioimmunometric serum PSA concentration. The outcome variable was dichotomous, either skeletal metastasis or non-skeletal metastasis, based on the results of Tc-99m MDP whole body bone scintigraphy. To assess the performance for classification model in clinical study, the discrimination and calibration of an ANN model was calculated. The enrolled subjects consisted of 111 consecutive male patients aged 72.41 ± 7.69 years with prostate cancer. Sixty-seven patients (60.4%) had skeletal metastasis based on the scintigraphic diagnosis. The final best architecture of neural network model was four-layered perceptrons. The area under the receiver-operating characteristics curve (0.88 ± 0.07) revealed excellent discriminatory power (p < 0.001) with the best simultaneous sensitivity (87.5%) and specificity (83.3%). The Hosmer–Lemeshow statistic was 6.74 (p = 0.08 > 0.05), which represented a good-fit calibration. These results suggest that an ANN, which is based on limited clinical parameters, appears to be a promising method in forecasting of the skeletal metastasis in patients with prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coleman, R. E., Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 27(3):165–176, 2001.

    Article  Google Scholar 

  2. Carlin, B. I., and Andriole, G. L., The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer. 88(12 Suppl):2989–2994, 2000.

    Article  Google Scholar 

  3. Rigaud, J., Tiguert, R., Le Normand, L., Karam, G., Glemain, P., Buzelin, J. M. et al., Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J. Urol. 168(4 Pt 1):1423–1426, 2002.

    Google Scholar 

  4. Rodvold, D. M., McLeod, D. G., Brandt, J. M., Snow, P. B., and Murphy, G. P., Introduction to artificial neural networks for physicians: taking the lid off the black box. Prostate. 46(1):39–44, 2001.

    Article  Google Scholar 

  5. Forsstrom, J. J., and Dalton, K. J., Artificial neural networks for decision support in clinical medicine. Ann. Med. 27(5):509–517, 1995.

    Article  Google Scholar 

  6. Wei, J. T., Zhang, Z., Barnhill, S. D., Madyastha, K. R., Zhang, H., and Oesterling, J. E., Understanding artificial neural networks and exploring their potential applications for the practicing urologist. Urology. 52(2):161–172, 1998.

    Article  Google Scholar 

  7. Lisboa, P. J., A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw. 15(1):11–39, 2002.

    Article  Google Scholar 

  8. Anagnostou, T., Remzi, M., Lykourinas, M., and Djavan, B., Artificial neural networks for decision-making in urologic oncology. Eur. Urol. 43(6):596–603, 2003.

    Google Scholar 

  9. Miller, A. S., Blott, B. H., and Hames, T. K., Review of neural network applications in medical imaging and signal processing. Med. Biol. Eng. Comput. 30(5):449–464, 1992.

    Article  Google Scholar 

  10. Penny, W., and Frost, D., Neural networks in clinical medicine. Med. Decis. Mak. 16(4):386–398, 1996.

    Article  Google Scholar 

  11. Henderson, A. R., The bootstrap: a technique for data-driven statistics. Using computer-intensive analyses to explore experimental data. Clin. Chim. Acta. 359(1–2):1–26, 2005.

    Article  Google Scholar 

  12. Das, A., Ben-Menachem, T., Cooper, G. S., Chak, A., Sivak, M. V. Jr., Gonet, J. A. et al., Prediction of outcome in acute lower-gastrointestinal haemorrhage based on an artificial neural network: internal and external validation of a predictive model. Lancet. 362(9392):1261–1266, 2003.

    Article  Google Scholar 

  13. Banerjee, R., Das, A., Ghoshal, U. C., and Sinha, M., Predicting mortality in patients with cirrhosis of liver with application of neural network technology. J. Gastroenterol. Hepatol. 18(9):1054–1060, 2003.

    Article  Google Scholar 

  14. Wang, Y. F., Hu, T. M., Wu, C. C., Yu, F. C., Fu, C. M., Lin, S. H. et al., Prediction of target range of intact parathyroid hormone in hemodialysis patients with artificial neural network. Comput. Methods Programs Biomed. 83(2):111–119, 2006.

    Article  Google Scholar 

  15. Guan, P., Huang, D. S., and Zhou, B. S., Forecasting model for the incidence of hepatitis A based on artificial neural network. World J. Gastroenterol. 10(24):3579–3582, 2004.

    Google Scholar 

  16. Dreiseitl, S., and Ohno-Machado, L., Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform. 35(5–6):352–359, 2002.

    Article  Google Scholar 

  17. Linden, A., Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J. Eval. Clin. Pract. 12(2):132–139, 2006.

    Article  MathSciNet  Google Scholar 

  18. Hanley, J. A., and McNeil, B. J., A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 148(3):839–843, 1983.

    Google Scholar 

  19. Chatzicostas, C., Roussomoustakaki, M., Notas, G., Vlachonikolis, I. G., Samonakis, D., Romanos, J. et al., A comparison of Child-Pugh, APACHE II and APACHE III scoring systems in predicting hospital mortality of patients with liver cirrhosis. BMC Gastroenterol. 3:7, 2003.

    Article  Google Scholar 

  20. Lemeshow, S., and Hosmer, D. W. Jr., A review of goodness of fit statistics for use in the development of logistic regression models. Am. J. Epidemiol. 115(1):92–106, 1982.

    Google Scholar 

  21. Hosmer, D. W., Hosmer, T., Le Cessie, S., and Lemeshow, S., A comparison of goodness-of-fit tests for the logistic regression model. Stat. Med. 16(9):965–980, 1997.

    Article  Google Scholar 

  22. Chen, C. A., Lin, S. H., Hsu, Y. J., Li, Y. C., Wang, Y. F., and Chiu, J. S., Neural network modeling to stratify peritoneal membrane transporter in predialytic patients. Intern. Med. 45(9):663–664, 2006.

    Article  Google Scholar 

  23. Partin, A. W., Kattan, M. W., Subong, E. N., Walsh, P. C., Wojno, K. J., Oesterling, J. E. et al., Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA. 277(18):1445–1451, 1997.

    Article  Google Scholar 

  24. Kattan, M. W., Stapleton, A. M., Wheeler, T. M., and Scardino, P. T., Evaluation of a nomogram used to predict the pathologic stage of clinically localized prostate carcinoma. Cancer. 79(3):528–537, 1997.

    Article  Google Scholar 

  25. Murphy, G. P., Snow, P. B., Brandt, J., Elgamal, A., and Brawer, M. K., Evaluation of prostate cancer patients receiving multiple staging tests, including ProstaScint scintiscans. Prostate. 42(2):145–149, 2000.

    Article  Google Scholar 

  26. Batuello, J. T., Gamito, E. J., Crawford, E. D., Han, M., Partin, A. W., McLeod, D. G. et al., Artificial neural network model for the assessment of lymph node spread in patients with clinically localized prostate cancer. Urology. 57(3):481–485, 2001.

    Article  Google Scholar 

  27. Han, M., Snow, P. B., Brandt, J. M., and Partin, A. W., Evaluation of artificial neural networks for the prediction of pathologic stage in prostate carcinoma. Cancer. 91(8 Suppl):1661–1666, 2001.

    Article  Google Scholar 

  28. Tewari, A., and Narayan, P., Novel staging tool for localized prostate cancer: a pilot study using genetic adaptive neural networks. J. Urol. 160(2):430–436, 1998.

    Article  Google Scholar 

  29. Crawford, E. D., Batuello, J. T., Snow, P., Gamito, E. J., McLeod, D. G., Partin, A. W. et al., The use of artificial intelligence technology to predict lymph node spread in men with clinically localized prostate carcinoma. Cancer. 88(9):2105–2109, 2000.

    Article  Google Scholar 

  30. Bates, D. W., Kuperman, G. J., Wang, S., Gandhi, T., Kittler, A., Volk, L. et al., Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J. Am. Med. Inform. Assoc. 10(6):523–530, 2003.

    Article  Google Scholar 

  31. Carter, H. B., Epstein, J. I., and Partin, A. W., Influence of age and prostate-specific antigen on the chance of curable prostate cancer among men with nonpalpable disease. Urology. 53(1):126–130, 1999.

    Article  Google Scholar 

  32. Jung, K., Lein, M., Stephan, C., Von Hosslin, K., Semjonow, A., Sinha, P. et al., Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int. J. Cancer. 111(5):783–791, 2004.

    Article  Google Scholar 

  33. Stephan, C., Xu, C., Brown, D. A., Breit, S. N., Michael, A., Nakamura, T. et al., Three new serum markers for prostate cancer detection within a percent free PSA-based artificial neural network. Prostate. 66(6):651–659, 2006.

    Article  Google Scholar 

  34. Oates, J. C., Varghese, S., Bland, A. M., Taylor, T. P., Self, S. E., Stanislaus, R. et al., Prediction of urinary protein markers in lupus nephritis. Kidney Int. 68(6):2588–2592, 2005.

    Article  Google Scholar 

  35. Martich, G. D., Waldmann, C. S., and Imhoff, M., Clinical informatics in critical care. J. Intensive Care Med. 19(3):154–163, 2004.

    Article  Google Scholar 

  36. Yamamura, S., Takehira, R., Kawada, K., Nishizawa, K., Katayama, S., Hirano, M. et al., Application of artificial neural network modelling to identify severely ill patients whose aminoglycoside concentrations are likely to fall below therapeutic concentrations. J. Clin. Pharm. Ther. 28(5):425–432, 2003.

    Article  Google Scholar 

  37. Boone, J. M., Gross, G. W., and Greco-Hunt, V., Neural networks in radiologic diagnosis. I. Introduction and illustration. Invest. Radiol. 25(9):1012–1016, 1990.

    Article  Google Scholar 

  38. O’Dowd, G. J., Veltri, R. W., Orozco, R., Miller, M. C., and Oesterling, J. E., Update on the appropriate staging evaluation for newly diagnosed prostate cancer. J. Urol. 158(3 Pt 1):687–698, 1997.

    Google Scholar 

  39. Hurwitz, G. A., Weingert, M. E., Silver, D. L., MacDonald, A. C., Finnie, K. J., Powe, J. E. et al., The usefulness of stress tests performed in the nuclear medicine department: mathematical methods to assess efficacy at various angiographic endpoints. Nucl. Med. Commun. 17(6):463–474, 1996.

    Article  Google Scholar 

  40. Hunter, A., Kennedy, L., Henry, J., and Ferguson, I., Application of neural networks and sensitivity analysis to improved prediction of trauma survival. Comput. Methods Programs Biomed. 62(1):11–19, 2000.

    Article  Google Scholar 

  41. Heckerling, P. S., Gerber, B. S., Tape, T. G., and Wigton, R. S., Entering the black box of neural networks. Methods Inf. Med. 42(3):287–296, 2003.

    Google Scholar 

  42. Arana, E., Marti-Bonmati, L., Bautista, D., and Paredes, R., Qualitative diagnosis of calvarial metastasis by neural network and logistic regression. Acad. Radiol. 11(1):45–52, 2004.

    Article  Google Scholar 

  43. Fu, W. J., Carroll, R. J., and Wang, S., Estimating misclassification error with small samples via bootstrap cross-validation. Bioinformatics. 21(9):1979–1986, 2005.

    Article  Google Scholar 

  44. Fujimoto, R., Higashi, T., Nakamoto, Y., Hara, T., Lyshchik, A., Ishizu, K. et al., Diagnostic accuracy of bone metastases detection in cancer patients: comparison between bone scintigraphy and whole-body FDG-PET. Ann. Nucl. Med. 20(6):399–408, 2006.

    Article  Google Scholar 

  45. Even-Sapir, E., Metser, U., Mishani, E., Lievshitz, G., Lerman, H., and Leibovitch, I., The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J. Nucl. Med. 47(2):287–297, 2006.

    Google Scholar 

  46. Cross, S. S., Harrison, R. F., and Kennedy, R. L., Introduction to neural networks. Lancet. 346(8982):1075–1079, 1995.

    Article  Google Scholar 

Download references

Acknowledgement

This paper is in memorial of Mr. A-Tsai Lee, Dr. Jainn-Shiun Chiu’s maternal grandfather, who died from prostate cancer with skeletal metastasis on 20 October 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, JS., Wang, YF., Su, YC. et al. Artificial Neural Network to Predict Skeletal Metastasis in Patients with Prostate Cancer. J Med Syst 33, 91–100 (2009). https://doi.org/10.1007/s10916-008-9168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-008-9168-2

Keywords

Navigation