Skip to main content
Log in

Stabilized FEM for Some Optimal Design Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Some optimal design problems in topology optimization eventually lead to degenerate convex minimization problems \(E(v):=\int _\varOmega W(\nabla v)dx-\int _\varOmega fvdx\) for \(v\in H_{0}^{1}(\varOmega ) \) with possibly multiple minimizers u, but with a unique stress \(\sigma :=DW(\nabla u)\). The discretization of degenerate convex minimization problems experience numerical difficulties with a singular or nearly singular Hessian matrix. This paper studies a modified discretization by adding a stabilization term to the discrete energy. It will be proven that this stabilization technique leads to a posteriori error control on unstructured triangulations, and so enables the use of adaptive algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bartels, S., Carstensen, C.: A convergent adaptive finite element method for an optimal design problem. Numer. Math. 108, 359–385 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartels, S., Carstensen, C., Plecháč, P., Prohl, A.: Convergence for stabilisation of degenerate convex minimsation problems. Interfaces Free Bound 6, 253–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boiger, W., Carstensen, C.: On the strong convergence of gradients in stabilised degenerate convex minimisation problems. SIAM J. Numer. Anal. 47, 4569–4580 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Scott, L.: The Mathemathical Theory of Finite Element Methods, 2nd edn. Springer, Berlin (2002). (Texts Appl. Math. 15)

    Book  Google Scholar 

  5. Carstensen, C., Bahriawati, C.: Three matlab implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math. 5, 333–361 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Carstensen, C., Günther, D., Rabus, H.: Mixed finite element method for a degenerate convex variational problems from topology optimization. SIAM J. Numer. Anal. 50, 522–543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carstensen, C., Jochimsen, K.: Adaptive finite element methods for microstructures? Numerical experiments for a 2-well benchmark. Computing 71, 175–204 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carstensen, C., Liu, D.J.: Nonconforming fems for an optimal design problem. SIAM J. Numer. Anal. 53, 874–894 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carstensen, C., Müller, S.: Local stress regularity in scalar nonconvex variational problems. SIAM J. Math. Anal. 34, 495–509 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carstensen, C., Plecháč, P.: Numerical solution of the scalar double-well problem allowing microstructure. Math. Comput. 66, 997–1026 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM. Math. Comput. 71, 945–969 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cherkaev, A.: Variational Methods for Structural Optimization. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  13. French, D.A.: On the convergence of finite element approximations of a relaxed variational problem. SIAM J. Numer. Anal. 27, 419–436 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goodman, J., Kohn, R.V., Reyna, L.: Numerical study of a relaxed variational problem from optimal design. Comput. Methods Appl. Mech. Eng. 57, 107–127 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Knees, D.: Global stress regularity of convex and some nonvex variational problems. Ann. Mat. Pure Appl. 187, 157–184 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kohn, R., Strang, G.: Optimal design and relaxation of variational problems I, II, III. Commun. Pure Appl. Math. 39, 113–137, 139–182, 353–377 (1986)

Download references

Acknowledgements

This work was partly developed while the first author was visiting the Department of Mathematics at Humboldt University. We would like to thank professor C. Carstensen for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Liu.

Additional information

This author’s research was supported by National Natural Science Foundation of China (Nos. 11571226, 11001168, and 61201113).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D.J., Jiang, D.D., Liu, Y. et al. Stabilized FEM for Some Optimal Design Problem. J Sci Comput 73, 228–241 (2017). https://doi.org/10.1007/s10915-017-0409-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0409-8

Keywords

Mathematics Subject Classification

Navigation