Skip to main content
Log in

Numerical Analysis of Fully Discretized Crank–Nicolson Scheme for Fractional-in-Space Allen–Cahn Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider numerical methods for solving the fractional-in-space Allen–Cahn equation which contains small perturbation parameters and strong nonlinearity. A standard fully discretized scheme for this equation is considered, namely, using the conventional second-order Crank–Nicolson scheme in time and the second-order central difference approach in space. For the resulting nonlinear scheme, we propose a nonlinear iteration algorithm, whose unique solvability and convergence can be proved. The nonlinear iteration can avoid inverting a dense matrix with only \(\mathcal {O}(N\log N)\) computation complexity. One major contribution of this work is to show that the numerical solutions satisfy discrete maximum principle under reasonable time step constraint. Based on the maximum stability, the nonlinear energy stability for the fully discrete scheme is established, and the corresponding error estimates are investigated. Numerical experiments are performed to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  2. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54(4), 937–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34, A2145–A2172 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choi, J.W., Lee, H.G., Jeong, D., Kim, J.: An unconditionally gradient stable numerical method for solving the Allen–Cahn equation. Phys. A Stat. Mech. Appl. 388(9), 1791–1803 (2009)

    Article  MathSciNet  Google Scholar 

  5. Du, Q., Yang, J.: Asymptotic compatible Fourier spectral approximations of nonlocal Allen–Cahn equations. SIAM J. Numer. Anal. 54(3), 1899–1919 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems, Unpublished. http://www.math.utah.edu/eyre/research/methods/stable.ps (1998)

  7. Feng, X., Prohl, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng, X., Song, H., Tang, T., Yang, J.: Nonlinear stability of the implicit–explicit methods for the Allen–Cahn equation. Inverse Probl. Imaging 7, 679–695 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, X., Tang, T., Yang, J.: Stabilized Crank–Nicolson/Adams–Bashforth schemes for phase field models. East Asian J. Appl. Math. 3, 59–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)

    Article  MathSciNet  Google Scholar 

  11. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Qiao, Z.H., Zhang, Z.R., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33, 1395–1414 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci. 14(6), 1517–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discret. Contin. Dyn. Syst. 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tang, T., Yang, J.: Implicit–explicit scheme for the Allen–Cahn equation preserves the maximum principle. J. Comput. Math. 34, 471–481 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wikipedia of Tartaglia. https://en.wikipedia.org/wiki/Niccolo_Fontana_Tartaglia

  20. Yang, X.: Error analysis of stabilized semi-implicit method of Allen–Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 11(4), 1057–1070 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, J., Du, Q.: Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit. SIAM J. Sci. Comput. 31(4), 3042–3063 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the Tianliang Hou is supported by National Natural Science Foundation of China (No. 11526036), Scientific and Technological Developing Scheme of Jilin Province (No. 20160520108JH), and Science and Technology Research Project of Jilin Provincial Department of Education (No. 201646). The research of the Tao Tang is partially supported by Hong Kong Research Grants Council, National Science Foundation of China, and Southern University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, T., Tang, T. & Yang, J. Numerical Analysis of Fully Discretized Crank–Nicolson Scheme for Fractional-in-Space Allen–Cahn Equations. J Sci Comput 72, 1214–1231 (2017). https://doi.org/10.1007/s10915-017-0396-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0396-9

Keywords

Mathematics Subject Classification

Navigation