Skip to main content
Log in

A Very High-Order Accurate Staggered Finite Volume Scheme for the Stationary Incompressible Navier–Stokes and Euler Equations on Unstructured Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a sixth-order staggered finite volume scheme based on polynomial reconstructions to achieve high accurate numerical solutions for the incompressible Navier–Stokes and Euler equations. The scheme is equipped with a fixed-point algorithm with solution relaxation to speed-up the convergence and reduce the computation time. Numerical tests are provided to assess the effectiveness of the method to achieve up to sixth-order convergence rates. Simulations for the benchmark lid-driven cavity problem are also provided to highlight the benefit of the proposed high-order scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adam, Y.: Highly accurate compact implicit methods and boundary conditions. J. Comput. Phys. 24, 10–22 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barth, T.J.: Recent Developments in High Order \(k\)-Exact Reconstruction on Unstructured Meshes. In: AIAA 93, AIAA-93-0668, pp. 1–15. AIAA, Reno Nevada (1993)

  3. Barth, T.J., Frederickson, P.O.: Higher Order Solution of the Euler Equations on Unstructured Grids Using Quadratic Reconstruction. AIAA Paper 90-0013 (1990)

  4. Boersma, B.J.: A 6th order staggered compact finite difference method for the incompressible Navier–Stokes and scalar transport equations. J. Comput. Phys. 230, 4940–4954 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boivin, S., Cayré, F., Hérard, J.-M.: A finite volume method to solve the Navier–Stokes equations for incompressible flows on unstructured meshes. Int. J. Therm. Sci. 39, 806–825 (2000)

    Article  Google Scholar 

  6. Boularas, A., Clain, S., Baudoin, F.: A Sixth-Order Finite Volume Method for Diffusion Problem with Curved Boundaries. HAL preprint. https://hal.archives-ouvertes.fr/hal-01052517

  7. Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168, 464–499 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clain, S., Machado, G.J.: A very high-order finite volume method for the time-dependent convectiondiffusion problem with Butcher Tableau extension. Comput. Math. Appl. 68, 1292–1311 (2014)

    Article  MathSciNet  Google Scholar 

  9. Costa, R., Clain, S., Machado, G.J.: A Sixth-Order Finite Volume Scheme for the Steady-State Incompressible Stokes Equations on Staggered Unstructured Meshes (submitted). https://hal.archives-ouvertes.fr/hal-01107313

  10. Cueto-Felgueroso, L., Colominas, I., Nogueira, X., Navarrina, F., Casteleiro, M.: Finite volume solvers and moving least-squares approximations for the compressible Navier–Stokes equations on unstructured grids. Comput. Methods Appl. Mech. Eng. 196, 4712–4736 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clain, S., Machado, G.J., Nóbrega, J.M., Pereira, R.M.S.: A sixth-order finite volume method for the convection–diffusion problem with discontinuous coefficients. Comput. Methods Appl. Mech. Eng. 267, 43–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diot, S., Loubère, R., Clain, S.: the mood method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 73, 362–392 (2013)

    Article  Google Scholar 

  13. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, vol. 159. Springer, New York (2004)

    MATH  Google Scholar 

  14. Eymard, R., Latché, J.C., Herbin, R., Piar, B.: Convergence of a locally stabilized collocated finite volume scheme for incompressible flows. M2AN 43, 889–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferziger, J.H., Perić, M.: Computational Methods for Fluids Dynamics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  16. Fosso, A., Deniau, H., Sicot, F., Saguat, P.: Curvilinear finite volume schemes using high-order compact interpolation. J. Comput. Phys. 229, 5090–5122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, W., Duan, Y.-L., Liu, R.-X.: The finite volume projection method with hybrid unstructured triangular collocated grids for incompressible flows. J. Hydrodyn. 21, 201–211 (2009)

    Article  Google Scholar 

  18. Hirsh, R.-S.: Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique. J. Comput. Phys. 19, 90–109 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hokpunna, A., Manhart, M.: Compact fourth-order finite volume method for numerical solutions of Navier–Stokes equations on staggered grids. J. Comput. Phys. 229, 7545–7570 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ivan, L., Groth, C.P.T.: High-Order Solution-Adaptative Central Essentially Non-oscillatory (CENO) Method for Viscous Flows. AIAA Paper 2011-367 (2011)

  21. Kampanis, N.A., Ekaterinaris, J.A.: A staggered grid, high-order accurate method for the incompressible Navier–Stokes equations. J. Comput. Phys. 215, 589–613 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, J.W., Lee, D.J.: Optimized compact finite difference schemes with maximum resolution. AIAA J. 34(5), 887–893 (1996)

    Article  MATH  Google Scholar 

  23. Kobayashi, M.H.: On a class of Padé finite volume methods. J. Comput. Phys. 156, 137–180 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 87, 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Palacios, L.R.: High-order finite volume methods based on moving least squares for computational fluid dynamics. In: Application to All-Speed and Incompressible Flows on Unstructured Grids. Ph.D. thesis, Universidade da Coruña (2015)

  27. Lacor, C., Smirnov, S., Baelmans, M.: A finite volume formulation of compact central schemes on arbitrary structural grids. J. Comput. Phys. 198, 535–566 (2004)

    Article  MATH  Google Scholar 

  28. Michalak, C., Ollivier-Gooch, C.: Unstructured High-Order Accurate Finite-Volume Solutions of the Navier–Stokes Equations. AIAA Paper 2009-954 (2009)

  29. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, New York (1980)

    MATH  Google Scholar 

  30. Pereira, J.M.C., Kobayashi, M.H., Pereira, J.C.F.: A fourth-order-accurate Finite volume compact method for the incompressible Navier–Stokes solutions. J. Comput. Phys. 167, 217–243 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Piller, M., Stalio, E.: Finite volume compact schemes on staggered grids. J. Comput. Phys. 197, 299–340 (2004)

    Article  MATH  Google Scholar 

  32. Ramírez, L., Nogueira, X., Hhelladi, S., Chassaing, J., Colominas, I.: A new higher-order finite volume method based on moving least squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids. Comput. Methods Appl. Mech. Eng. 278, 883–901 (2014)

    Article  MathSciNet  Google Scholar 

  33. Rhie, C.M., Chow, W.L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

  34. Shang, S., Zhao, X., Bayyuk, S.: Generalized formulations for the Rhie–Chow interpolation. J. Comput. Phys. 258, 880–914 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vidović, D., Segal, A., Wesseling, P.: A superlinearly convergent finite volume method for the incompressible Navier–Stokes equations on staggered unstructured grids. J. Comput. Phys. 198, 159–177 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P.: The Finite Element Method for Fluid Dynamics. Butterworth-Heinemann, Waltham (2014)

    MATH  Google Scholar 

  37. Vanka, S.P.: Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65, 138–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ghia, U., Ghia, K.N., Shin, C.T.: High Re-solution for incompressible Navier–Stokes equation and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  39. Schreiber, R., Keller, H.B.: Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49, 310–333 (1983)

    Article  MATH  Google Scholar 

  40. Hou, S., Zou, Q., Chen, S., Doolen, G., Cogley, A.: Simulation of cavity flows by the lattice Boltzmann method. J. Comput. Phys. 118, 329–347 (1995)

    Article  MATH  Google Scholar 

  41. Gupta, M.M., Kalita, J.C.: A new paradigm for solving Navier–Stokes equations: streamfunction–velocity formulation. J. Comput. Phys. 207, 52–68 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was financed by the International Centre for Mathematics and Computer Science in Toulouse–CIMI, by FEDER Funds through Programa Operational Fatores de Competitividade— COMPETE, and by Portuguese Funds FCT—Fundação para a Ciência e a Tecnologia, within the Projects PEst-C/MAT/UI0013/2014 and FCT-ANR/MAT-NAN/0122/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Clain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, R., Clain, S., Machado, G.J. et al. A Very High-Order Accurate Staggered Finite Volume Scheme for the Stationary Incompressible Navier–Stokes and Euler Equations on Unstructured Meshes. J Sci Comput 71, 1375–1411 (2017). https://doi.org/10.1007/s10915-016-0348-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0348-9

Keywords

Navigation