Skip to main content
Log in

Positivity-Preserving Discontinuous Galerkin Methods with Lax–Wendroff Time Discretizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work introduces a single-stage, single-step method for the compressible Euler equations that is provably positivity-preserving and can be applied on both Cartesian and unstructured meshes. This method is the first case of a single-stage, single-step method that is simultaneously high-order, positivity-preserving, and operates on unstructured meshes. Time-stepping is accomplished via the Lax–Wendroff approach, which is also sometimes called the Cauchy–Kovalevskaya procedure, where temporal derivatives in a Taylor series in time are exchanged for spatial derivatives. The Lax–Wendroff discontinuous Galerkin (LxW-DG) method developed in this work is formulated so that it looks like a forward Euler update but with a high-order time-extrapolated flux. In particular, the numerical flux used in this work is a convex combination of a low-order positivity-preserving contribution and a high-order component that can be damped to enforce positivity of the cell averages for the density and pressure for each time step. In addition to this flux limiter, a moment limiter is applied that forces positivity of the solution at finitely many quadrature points within each cell. The combination of the flux limiter and the moment limiter guarantees positivity of the cell averages from one time-step to the next. Finally, a simple shock capturing limiter that uses the same basic technology as the moment limiter is introduced in order to obtain non-oscillatory results. The resulting scheme can be extended to arbitrary order without increasing the size of the effective stencil. We present numerical results in one and two space dimensions that demonstrate the robustness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bochev, P., Ridzal, D., Scovazzi, G., Shashkov, M.: Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary Lagrangian–Eulerian methods. J. Comput. Phys. 230(13), 5199–5225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Book, D.L.: Finite-Difference Techniques for Vectorized Fluid Dynamics Calculations, vol. 1. Springer-Verlag, New York (1981)

    Book  MATH  Google Scholar 

  3. Book, D.L., Boris, J.P., Hain, K.: Flux-corrected transport II: generalizations of the method. J. Comput. Phys. 18(3), 248–283 (1975)

    Article  MATH  Google Scholar 

  4. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11(1), 38–69 (1973)

    Article  MATH  Google Scholar 

  5. Boris, J.P., Book, D.L.: Flux-corrected transport. III. Minimal-error FCT algorithms. J. Comput. Phys. 20(4), 397–431 (1976)

    Article  MATH  Google Scholar 

  6. Christlieb, A.J., Feng, X., Seal, D.C., Tang, Q.: A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations. arXiv preprint arXiv:1509.09208 (2015)

  7. Christlieb, A.J., Güçlü, Y., Seal, D.C.: The Picard integral formulation of weighted essentially nonoscillatory schemes. SIAM J. Numer. Anal. 53(4), 1833–1856 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. J. Comput. Phys. 281, 334–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations. SIAM J. Sci. Comput. 37(4), A1825–A1845 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comp. 54(190), 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 3–50. Springer, Berlin (2000)

  12. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys 141(2), 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure. Appl. Math. 5, 243–255 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dumbser, M., Käser, M., Toro, E.F.: An arbitrary high-order discontinuous galerkin method for elastic waves on unstructured meshes-v. Local time stepping and p-adaptivity. Geophys. J. Int. 171(2), 695–717 (2007)

    Article  Google Scholar 

  18. Dumbser, M., Munz, C.-D.: ADER discontinuous Galerkin schemes for aeroacoustics. Comptes Rendus Mécanique 333(9), 683–687 (2005)

    Article  MATH  Google Scholar 

  19. Dumbser, M., Munz, C.-D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27(1–3), 215–230 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.S.: ADER-WENO finite volume schemes with space-time adaptive mesh refinement. J. Comput. Phys. 248, 257–286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.-D.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230(11), 4232–4247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Godunov, S.K.: Difference method of computation of shock waves. Uspehi Mat. Nauk (N.S.) 12(1(73)), 176–177 (1957)

    MathSciNet  Google Scholar 

  23. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, W., Qiu, J.-M., Qiu, J.: A new Lax–Wendroff discontinuous Galerkin method with superconvergence. J. Sci. Comput. 65(1), 299–326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Harten, A., Zwas, G.: Self-adjusting hybrid schemes for shock computations. J. Comput. Phys. 9(3), 568–583 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kraaijevanger, J.F.B.M.: Contractivity of Runge–Kutta methods. BIT 31(3), 482–528 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuzmin, D., Löhner, R., Turek, S., (eds.): Flux-Corrected Transport: Principles, Algorithms, and Applications. Scientific Computation. Springer, Berlin, Heidelberg (2005)

  28. Lax, P., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 58(1), 41–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moe, S.A., Rossmanith, J.A., Seal, D.C.: A simple and effective high-order shock-capturing limiter for discontinuous Galerkin methods. arXiv preprint arXiv:1507.03024v1 (2015)

  32. Perthame, B., Shu, C.-W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73(1), 119–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Qiu, J., Dumbser, M., Shu, C.-W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194(42–44), 4528–4543 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rossmanith, J.A.: DoGPack software. http://www.dogpack-code.org (2015)

  35. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol 17, pp. 211–220 (2002)

  36. Seal, D.C.: FINESS software. https://bitbucket.org/dseal/finess (2015)

  37. Seal, D.C., Güçlü, Y., Christlieb, A.J.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60(1), 101–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Seal, D.C., Tang, Q., Xu, Z., Christlieb, A.J.: An explicit high-order single-stage single-step positivity-preserving finite difference WENO method for the compressible Euler equations. J. Sci. Comput., 1–20 (2015)

  39. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  40. Shu, C.-W.: High order weno and dg methods for time-dependent convection-dominated pdes: a brief survey of several recent developments. J. Comput. Phys. 316, 598–613 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  42. Taube, A., Dumbser, M., Balsara, D.S., Munz, C.-D.: Arbitrary high-order discontinuous Galerkin schemes for the magnetohydrodynamic equations. J. Sci. Comput. 30(3), 441–464 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol 17, pp. 609–618 (2002)

  44. Ullrich, P.A., Norman, M.R.: The flux-form semi-Lagrangian spectral element (FF-SLSE) method for tracer transport. Q. J. R. Meteorol. Soc. 140(680), 1069–1085 (2014)

    Article  Google Scholar 

  45. Von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiong, T., Qiu, J.-M., Xu, Z.: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252, 310–331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xiong, T., Qiu, J.-M., Xu, Z.: High-order maximum-principle-preserving discontinuous Galerkin method for convection-diffusion equations. SIAM J. Sci. Comput. 37, 583–608 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comp. 83(289), 2213–2238 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zalesak, S.T.: The design of flux-corrected transport (FCT) algorithms for structured grids. In: Flux-Corrected Transport. Scientific Computation, pp. 23–65. Springer, Berlin (2005)

  50. Zhang, X., Shu, C.-W.: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comp. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. A 467(2134), 2752–2776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50(1), 29–62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zheng, H., Zhang, Z., Liu, E.: Non-linear seismic wave propagation in anisotropic media using the flux-corrected transport technique. Geophys. J. Int. 165(3), 943–956 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The work of SAM was supported in part by NSF Grant DMS–1216732. The work of JAR was supported in part by NSF Grant DMS–1419020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Seal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moe, S.A., Rossmanith, J.A. & Seal, D.C. Positivity-Preserving Discontinuous Galerkin Methods with Lax–Wendroff Time Discretizations. J Sci Comput 71, 44–70 (2017). https://doi.org/10.1007/s10915-016-0291-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0291-9

Keywords

Navigation