Skip to main content
Log in

Low Rank Prior and Total Variation Regularization for Image Deblurring

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The similar image patches should have similar underlying structures. Thus the matrix constructed from stacking the similar patches together has low rank. Based on this fact, the nuclear norm minimization, which is the convex relaxation of low rank minimization, leads to good denoising results. Recently, the weighted nuclear norm minimization has been applied to image denoising. This approach presents state-of-the-art result for image denoising. In this paper, we further study the weighted nuclear norm minimization problem for general image recovery task. For the weights being in arbitrary order, we prove that such minimization problem has a unique global optimal solution in the closed form. Incorporating this idea with the celebrated total variation regularization, we then investigate the image deblurring problem. Numerical experimental results illustratively clearly that the proposed algorithms achieve competitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aharon, M., Elad, M., Bruckstein, A.M.: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  2. Breiman, L.: Better subset regression using the nonnegative garrote. Technometrics 37, 373–384 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, J., Candès, E., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, J., Chan, R., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging Vis. 36, 46–53 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cai, J., Huang, S., Ji, H., Shen, Z., Ye, G.: Data-driven tight frame construction and image denoising. Appl. Comput. Harmon. Anal. 37, 89–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, J., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8, 337–369 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  10. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chantas, G., Galatsanos, N.P., Molina, R., Katsaggelos, A.K.: Variational Bayesian image restoration with a product of spatially weighted total variation image priors. IEEE Trans. Image Process. 19, 351–362 (2010)

    Article  MathSciNet  Google Scholar 

  12. Chan, T., Zhou, H.M.: Total variation wavelet thresholding. J. Sci. Comput. 32, 315–341 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, K., Dong, H., Chan, K.S.: Reduced rank regression via adaptive nuclear norm penalization. Biometrika 100, 901–920 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cho, T.S., Joshi, N., Zitnick, C.L., Kang, S.B., Szeliski, R., Freeman, W.T.: A content-aware image prior. In: Proceedings of CVPR, pp. 169–176 (2010)

  15. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  16. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse 3D transform domain collaborative filtering. SPIE Electronic Imaging (2008)

  17. Danielyan, A., Katkovnik, V., Egiazarian, K.: BM3D frames and variational image deblurring. IEEE Trans. Image Process. 21, 1715–1728 (2012)

    Article  MathSciNet  Google Scholar 

  18. Daubechies, I., Teschkeb, G.: Variational image restoration by means of wavelets: simultaneous decomposition, deblurring, and denoising. Appl. Comput. Harmon. Anal. 19, 1–16 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, Y., Hintermüler, M., Neri, M.: An efficient primal-dual method for L1-TV image restoration. SIAM J. Imaging Sci. 2, 1168–1189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Effros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: Proceedings of 7th IEEE ICCV, pp. 1033–1038 (1999)

  21. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  22. Elad, M., Figueiredo, M., Ma, Y.: On the role of sparse and redundant representations in image processing. In: Proceedings of the IEEE Special Issue on Applications of Sparse Representation and Compressive Sensing, vol. 98, pp. 972–982 (2010)

  23. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University (2002)

  24. Gao, H.: Wavelet shrinkage denoising using the non-negative garrote. J. Comput. Graph. Stat. 7, 469–488 (1998)

    MathSciNet  Google Scholar 

  25. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of IEEE CVPR, pp. 2862–2869 (2014)

  28. Hu, Z., Huang, J., Yang, M.: Single image deblurring with adaptive dictionary learning. In: Proceedings of IEEE ICIP, pp. 1169–1172 (2010)

  29. Ji, H., Liu, C., Shen, Z., Xu, Y.: Robust video denoising using low rank matrix completion. In: Proceedings of IEEE CVPR, pp. 1791–1798 (2010)

  30. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: Proceedings of ICML, pp. 663–670 (2010)

  31. Lou, Y., Bertozzi, A., Soatto, S.: Direct sparse deblurring. J. Math. Imaging Vis. 39, 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42, 185–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu, C., Tang, J., Yan, S., Lin, Z.: Generalized nonconvex nonsmooth low-rank minimization. In: Proceedings of IEEE CVPR, pp. 4130–4137 (2014)

  34. Lu, C., Zhu, C., Xu, C., Yan, S., Lin, Z.: Generalized singular value thresholding. In: Proceedings of AAAI (2015)

  35. Ma, L., Ng, M., Yu, J., Zeng, T.: Efficient box-constrained TV-type-\(l^1\) algorithms for restoring images with impulse noise. J. Comput. Math. 31, 249–270 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, L., Moisan, L., Yu, J., Zeng, T.: A dictionary learning approach for Poisson image deblurring. IEEE Trans. Med. Imaging 32, 1277–1289 (2013)

    Article  Google Scholar 

  37. Ma, L., Yu, J., Zeng, T.: Sparse representation prior and total variation-based image deblurring under impulse noise. SIAM J. Imaging Sci. 6, 2258–2284 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Maleki, A., Narayan, M., Baraniuk, R.G.: Anisotropic nonlocal means denoising. Appl. Comput. Harmon. Anal. 35, 452–482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Neelamani, R., Choi, H., Baraniuk, R.: ForWaRD: Fourier wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Image Process. 52, 418–433 (2004)

    Article  MathSciNet  Google Scholar 

  40. Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  41. Quan, Y., Ji, H., Shen, Z.: Data-driven multi-scale non-local wavelet frame construction and image recovery. J. Sci. Comput. (2014). doi:10.1007/s10915-014-9893-2

    MATH  Google Scholar 

  42. Ron, A., Shen, Z.: Affine system in L2(Rd): the analysis of the analysis operator. J. Funct. Anal. 148, 408–447 (1997)

    Article  MathSciNet  Google Scholar 

  43. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wen, Y., Ng, M., Huang, Y.: Efficient total variation minimization methods for color image restoration. IEEE Trans. Image Process. 17, 2081–2088 (2008)

    Article  MathSciNet  Google Scholar 

  45. Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual Methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3, 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xie, Q., Meng, D., Gu, S., Zhang, L., Zuo, W., Feng, X., Xu, Z.: On the optimal solution of weighted nuclear norm minimization. Technical Report (2014)

  47. Yan, M., Yang, Y., Osher, S.: Exact low-rank matrix completion from sparsely corrupted entries via adaptive outlier pursuit. J. Sci. Comput. 56, 433–449 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zeng, T., Malgouyres, F.: Matching pursuit shrinkage in Hilbert spaces. Sig. Process. 91, 2754–2766 (2011)

    Article  Google Scholar 

  49. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3, 253–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, J.P., Chen, K., Yu, B.: An iterative Lagrange multiplier method for constrained total variation-based image denoising. SIAM J. Numer. Anal. 50, 983–1003 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: Proceedings of ICCV, pp. 479–486 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieyong Zeng.

Additional information

The research is supported by the National Natural Science Foundation of China (Nos. 61402462, 11271049, 11201455, 11671383, 61503202), RGC 211911, 12302714, and RFGs of HKBU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Xu, L. & Zeng, T. Low Rank Prior and Total Variation Regularization for Image Deblurring. J Sci Comput 70, 1336–1357 (2017). https://doi.org/10.1007/s10915-016-0282-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0282-x

Keywords

Navigation