Skip to main content

Advertisement

Log in

Fully Discretized Energy Stable Schemes for Hydrodynamic Equations Governing Two-Phase Viscous Fluid Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop systematically a numerical approximation strategy to discretize a hydrodynamic phase field model for a binary fluid mixture of two immiscible viscous fluids, derived using the generalized Onsager principle that warrants not only the variational structure but also the energy dissipation property. We first discretize the governing equations in space to arrive at a semi-discretized, time-dependent ordinary differential and algebraic equation (DAE) system in which a corresponding discrete energy dissipation law is preserved. Then, we discretize the DAE system in time to obtain a fully discretized system using a structure preserving finite difference method like the Crank–Nicolson method, which satisfies a fully discretized energy dissipation law. Alternatively, we solve the first order DAE system using the integration factor method after the algebraic equation is solved firstly. The integration factor method, which treats the linear, spatial derivative terms explicitly. Finally, two numerical examples are presented to compare the efficiency and accuracy of the two proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)

    Article  MATH  Google Scholar 

  2. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bridges, T.J., Reich, S.: Numerical methods for hamiltonian pdes. J. Phys. A Math. Gen. 39, 5287–5320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brigham, E.O.: The fast Fourier transform and its applications. Prentice Hall, Upper Saddle River (1988)

    Google Scholar 

  5. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical pdes using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S., Zhang, Y.: Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods. J. Comput. Phys. 230, 4336–4352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for pdes. SIAM J. Sci. Comput. 33, 2318–2340 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delfour, M., Fortin, M., Payr, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, Q., Zhu, W.: Stability analysis and applications of the exponential time differencing schemes. J. Comput. Math. 22, 200–209 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Du, Q., Zhu, W.: Modified exponential time differencing schemes: analysis and applications. BIT Numer. Math. 45, 307–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Fei, Z., Vazquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45, 17–30 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Feng, K., Qin, M.: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  15. Furihata, D.: Finite difference schemes for \(\frac{\partial u}{\partial t}=(\frac{\partial }{\partial x})^{\alpha }\frac{\delta g}{\delta u}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156, 181–205 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Furihata, D., Matsuo, T.: Discrete Variational Derivative Method. A Structure-Preserving Numerical Method for Partial Differential Equations. Chapman Hall, Boca Raton (2011)

    MATH  Google Scholar 

  17. Gong, Y., Cai, J., Wang, Y.: Some new structure-preserving algorithms for general multi-symplectic formulations of hamiltonian pdes. J. Comput. Phys. 279, 80–102 (2014)

    Article  MathSciNet  Google Scholar 

  18. Gray, R.M.: Toeplitz and Circulant Matrices: A Review. Found. Trends Commu. Inform. Theory. 2, 155–239 (2006)

    Article  MATH  Google Scholar 

  19. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  20. Hua, J., Lin, P., Liu, C., Wang, Q.: Energy law preserving \(c^0\) finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 230, 7115–7131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, M.: A hamiltonian approximation to simulate solitary waves of the Korteweg-de Vries equation. Math. Comput. 56, 607–620 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hyman, J.M., Shashkov, M.: Mimetic discretizations for Maxwell’s equations. J. Comput. Phys. 151, 881–909 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jameson, A., Schmidt, W., Turkel, E.: Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time-Stepping Schemes. AIAA 1259-1981 (1981)

  24. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ju, L., Liu, X., Leng, W.: Compact implicit integration factor methods for a family of semi linear fourth-order parabolic equations. Discrete Continuous Dyn. Syst. Ser. B 19, 1667–1687 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62, 431–455 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kassam, A.K., Trefethen, L.N.: Fourth-order time-stepping for stiff pdes. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kleefeld, B., Khaliq, A.Q.M., Wade, B.A.: An etd Crank–Nicolson method for reaction-diffusion systems. Numer. Methods Partial Differ. Equ. 28, 1309–1335 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Krogstad, S.: Generalized integrating factor methods for stiff pdes. J. Comput. Phys. 203, 72–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhauser, Basel (1992)

    Book  MATH  Google Scholar 

  31. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, X., Nie, Q.: Compact integration factor methods for complex domains and adaptive mesh refinement. J. Comput. Phys. 229, 5692–5706 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Van Loan, C.: Computational frameworks for the fast fourier transform. SIAM 10, (1992)

  35. Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171, 425–447 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nie, Q., Wan, F., Zhang, Y., Liu, X.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227, 5238–5255 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)

    Article  MATH  Google Scholar 

  38. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)

    Article  MATH  Google Scholar 

  39. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  40. Shen, J., Yang, X.: Decoupled energy stable schemes for phase-field models of two-phase complex fluids. SIAM J. Sci. Comput. 36, 122–145 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Strauss, W., Vazquez, L.: Numerical solution of a nonlinear Klein–Gordon equation. J. Comput. Phys. 28, 271–278 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, D., Chen, W., Nie, Q.: Semi-implicit integration factor methods on sparse grids for high-dimensional systems. J. Comput. Phys. 292, 43–55 (2015)

    Article  MathSciNet  Google Scholar 

  43. Wang, D., Zhang, L., Nie, Q.: Array-representation integration factor method for high-dimensional systems. J. Comput. Phys. 258, 585–600 (2014)

    Article  MathSciNet  Google Scholar 

  44. Wang, Y., Hong, J.: Multi-symplectic algorithms for hamiltonian partial differential equations. Commun. Appl. Math. Comput. 27, 163–230 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Wiegmann, A.: Fast Poisson, Fast Helmholtz and Fast Linear Elastostatic Solvers on Rectangular Parallelepipeds. Lawrence Berkeley National Laboratory, Paper LBNL-43565 (1999)

  46. Yang, X.: Modeling and Numerical Simulations of Active Liquid Crystals. PhD thesis, Nankai University, Tianjin, China (2014)

  47. Yang, X., Li, J., Forest, M.G., Wang, Q.: Hydrodynamic theories for flows of active liquid crystals and generalized onsager principle. Entropy, (2016, in press)

  48. Zhao, J., Wang, Q.: Semi-discrete energy-stable schemes for a tensor-based hydrodynamic model of nematic liquid crystal flows. J. Sci. Comput. (2016). doi:10.1007/s10915-016-0177-x

  49. Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)

    Article  MathSciNet  Google Scholar 

  50. Zhao, J., Yang, X., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. (2016, in press)

  51. Zhao, S., Ovadia, J., Liu, X., Zhang, Y., Nie, Q.: Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems. J. Comput. Phys. 230, 5996–6009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Additional information

Yuezheng Gong’s work is partially supported by China Postdoctoral Science Foundation through Grants 2016M591054. Xinfeng Liu’s work is partially supported by US National Science Foundation through Grant DMS1308948. Qi Wang’s work is partially supported by US National Science Foundation through Grants DMS-1200487 and DMS-1517347, AFOSR Grant FA9550-12-1-0178, and SC EPSCOR GEAR awards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Liu, X. & Wang, Q. Fully Discretized Energy Stable Schemes for Hydrodynamic Equations Governing Two-Phase Viscous Fluid Flows. J Sci Comput 69, 921–945 (2016). https://doi.org/10.1007/s10915-016-0224-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0224-7

Keywords

Navigation