Skip to main content
Log in

Convergent Non-overlapping Domain Decomposition Methods for Variational Image Segmentation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper concerns with the non-overlapping domain decomposition methods (DDMs) for the Chan–Vese model in variational image segmentation. We work with a saddle point formulation for the non-overlapping decompositions, which leads to independent subproblems decoupled by the primal–dual algorithm. With the non-overlapping DDMs, only the interfaces of the adjacent subdomains are coupled, which means the information transmission takes place on such interfaces and therefore makes the proposed DDMs flexible and efficient. Moreover, we consider both the stripe-type and checkerboard-type decomposition methods and provide the rigorous proof of the convergence. Our numerical experiments demonstrate that the proposed DDMs are convergent, efficient, and quite robust with respect to the model parameters and image resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Cengage Learning, Boston (2014)

    Google Scholar 

  2. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  3. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  8. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation noise removal algorithm. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  12. Bae, E., Yuan, J., Tai, X.-C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis. 92, 112–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brown, E., Chan, T., Bresson, X.: Completely convex formulation of the Chan–Vese image segmentation model. Int. J. Comput. Vis. 98, 103–121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Imaging Sci. 5, 1113–1158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Scherzer, O. (ed.): Handbook of Mathematical Methods in Imaging. Springer, New York (2011)

    MATH  Google Scholar 

  16. Acar, R., Vogel, C.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10, 1217–1230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marquina, A., Osher, S.: Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. SIAM J. Sci. Comput. 22, 387–405 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vogel, C.: A multigrid method for total variation-based image denoising. In: Bowers, K.L., Lund, J. (eds.) Computation and Control IV, Progress in Systems and Control Theory, vol. 20, pp. 323–331. Birkhäuser, Boston (1995)

  19. Vogel, C.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  20. Vogel, C., Oman, M.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vogel, C.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7, 813–824 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldstein, T., Osher, S.: The split Bregman method for \(l^1\)-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1, 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Glowinski, R., Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  25. Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods and split-Bregman iterations for ROF, vectorial TV and higher order models. SIAM J. Imaging Sci. 3, 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends\(\textregistered \) Mach. Learn. 3(1), 1–122 (2011)

  27. Chan, R.H., Tao, M., Yuan, X.: Constrained total variational deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 6(1), 680–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  29. Appleton, B., Talbot, H.: Globally optimal geodesic active contours. J. Math. Imaging Vis. 23, 67–86 (2005)

    Article  MathSciNet  Google Scholar 

  30. Arrow, K., Hurwicz, L., Uzawa, H.: Studies in linear and non-linear programming, with contributions by H. B. Chenery, S. M. Johnson, S. Karlin, T. Marschak, R. M. Solow. Stanford Mathematical Studies in the Social Sciences, vol. II. Stanford University Press, Stanford (1958)

  31. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA, pp. 08–34. Center for Applied Math, CAM Reports No (2008)

  33. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tai, X.-C.: Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities. Numer. Math. 93, 755–786 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tai, X.-C., Espedal, M.: Applications of a space decomposition method to linear and nonlinear elliptic problems. Numer. Methods Partial Differ. Equ. 14, 717–737 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tai, X.-C., Espedal, M.: Rate of convergence of some space decomposition methods for linear and nonlinear problems. SIAM J. Numer. Anal. 35, 1558–1570 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tai, X.-C., Xu, J.: Global and uniform convergence of subspace correction methods for some convex optimization problems. Math. Comput. 71, 105–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Firsov, D., Lui, S.H.: Domain decomposition methods in image denoising using Gaussian curvature. J. Comput. Appl. Math. 193, 460–473 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Müller, J.: Parallel total variation minimization. University of Muenster, Diploma Thesis (2008)

  40. Duan, Y., Tai, X.C.: Domain decomposition methods with graph cuts algorithms for total variation minimization. Adv. Comput. Math. 36, 175–199 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tai, X.-C., Duan, Y.: Domain decomposition methods with graph cuts algorithms for image segmentation. Int. J. Numer. Anal. Model. 8, 137–155 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Xu, J., Tai, X.-C., Wang, L.-L.: A two-level domain decomposition method for image restoration. Inverse Probl. Imaging 4, 523–545 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, J., Chang, H., Qin, J.: Domain decomposition method for image deblurring. J. Comput. Appl. Math. 271, 401–414 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chang, H., Zhang, X., Tai, X.-C., Yang, D.: Domain decomposition methods for nonlocal total variation image restoration. J. Sci. Comput. 60, 79–100 (2014)

    Article  MATH  Google Scholar 

  45. Chang, H., Tai, X.-C., Yang, D.: Domain decomposition methods for total variation minimization. In: Tai, X.-C., et al. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition, vol. 8932. LNCS, Springer, Berlin (2015)

    Google Scholar 

  46. Chang, H., Tai, X.-C., Wang, L.-L., Yang, D.: Convergence rate of overlapping domain decomposition methods for the Rudin–Osher–Fatami model based on a dual formulation. SIAM J. Imaging Sci. 8, 564–591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Fornasier, M., Schönlieb, C.: Subspace correction methods for total variation and \(l_1\) minimization. SIAM J. Numer. Anal. 47, 3397–3428 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Fornasier, M., Langer, A., Schönlieb, C.: A convergent overlapping domain decomposition method for total variation minimization. Numer. Math. 116, 645–685 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hintermüller, M., Langer, A.: Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed \(l^1\)/\(l^2\) data-fidelity in image processing. SIAM J. Imaging Sci. 6, 2134–2173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Langer, A., Osher, S., Schonlieb, C.: Bregmanized domain decomposition for image restoration. J. Sci. Comput. 54, 549–576 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hintermüller, M., Langer, A.: Non-overlapping domain decomposition methods for dual total variation based image denoising. J. Sci. Comput. 62, 456–481 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lee, C., Lee, J., Woo, H., Yun, S.: Block decomposition methods for total variation by primal-dual stitching. J. Sci. Comput. (2015). doi:10.1007/s10915-015-0138-9

  53. Chang, H., Tai, X.-C., Wang, L.-L., Yang, D.: Convergence rate of overlapping domain decomposition methods for the Rudin–Osher–Fatami model based on a dual formulation. SIAM J. Imaging Sci. 8(1), 564–591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kunisch, K., Tai, X.-C.: Nonoverlapping domain decomposition methods for inverse problems. In: Bjorstard, P., Espedal, M., Keyes, D. (eds.) Proceedings of 9th International Conference on Domain Decompostion Methods. Wiley (1997)

  55. Boyd, S., Lin, X., Almir, M., Jacob, M.: Notes on Decomposition Methods. Notes for EE364B. Stanford University, Stanford (2007)

    Google Scholar 

  56. Lions, P.: On Schwarz Alternating Method III: A Variant for Nonoverlapping Subdomains. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  57. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pascal, G.: tvreg v2: variational imaging methods for denoising, deconvolution, inpainting, and segmentation (2010)

  59. Chang, H., Zhang, X., Tai, X.-C., Yang, D.: Domain decomposition methods for nonlocal total variation image restoration. J. Sci. Comput. 60(1), 79–100 (2014)

    Article  MATH  Google Scholar 

  60. Wei, K., Tai, X.-C., Chan, T.F., Leung, S.: Primal-dual method for continuous max-flow approaches, vol. pp. 15–67. UCLA CAM Report (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibin Chang.

Additional information

The research was partially supported by Natural Science Foundation of China, Grant No. 11426165, No. 11501413 and Tianjin 131 Talent Project.

Appendix

Appendix

There are many solvers to minimize (2.1) including the primal–dual algorithm [57]. The saddle point problem of (2.1) is built up as follows:

$$\begin{aligned} \max _{\varvec{p}}\min _{h} \int _\Omega \nabla h \cdot \varvec{p}+\alpha \int _\Omega s h-I_{K_p}(\varvec{p})+I_{K_h}(h), \end{aligned}$$
(5.1)

where

figure f

By defining \(G_1(h)=\alpha \int _\Omega s h +I_{K_h}(h)\) and \(G_2({\varvec{p}})=I_{K_p}({\varvec{p}})\), Eq. (5.1) reduces to the following form:

figure g

The primal–dual algorithm by Chambolle and Pock [31] can be used to solve the above problem.

figure h

Both subproblems of \(\varvec{p}\) and h in Eq. (5.3) have the closed-form forms, which are

$$\begin{aligned} \varvec{p}^{n+1}(x)=\dfrac{\varvec{\hat{p}^n}(x)}{\max \{1,|\varvec{\hat{p}^n}(x)|\}}, \end{aligned}$$

and

$$\begin{aligned} h^{n+1}(x)=\min \left\{ 1,\max \{0, \hat{h}^n(x)-\tau \alpha s(x)\}\right\} ,\quad \forall x \in \Omega . \end{aligned}$$

Theorem 5.1

([31]) The primal–dual algorithm is convergent if \(\tau \sigma <1/8.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Chang, H. & Tai, XC. Convergent Non-overlapping Domain Decomposition Methods for Variational Image Segmentation. J Sci Comput 69, 532–555 (2016). https://doi.org/10.1007/s10915-016-0207-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0207-8

Keywords

Mathematics Subject Classification

Navigation