Skip to main content
Log in

Modified Gauss–Laguerre Exponential Fitting Based Formulae

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Modified Gauss–Laguerre exponentially fitted quadrature rules are introduced for the computation of integrals of oscillatory functions over the whole positive semiaxis. Their weights and nodes depend on the frequency of oscillation in the integrand, thus increasing the accuracy of classical Gauss–Laguerre formulae. The asymptotic order is discussed, and an algorithm for determining weights and nodes for a general number N of nodes is provided, resulting an improvement of the existing quadrature formulae. Numerical illustrations are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arfken, G.: Mathematical Methods for Physicists, 3rd edn. Academic Press, Orlando, FL (1985)

    MATH  Google Scholar 

  2. Asheim, A., Deaño, A., Huybrechs, D., Wang, H.: A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discret. Contin. Dyn. Syst. 34(3), 883–901 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asheim, A., Huybrechs, D.: Complex Gaussian quadrature for oscillatory integral transforms. IMA J. Numer. Anal. 33(4), 1322–1341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, G., Sun, W.: A fast algorithm for the electromagnetic scattering from a large cavity. SIAM J. Sci. Comput. 27, 553–574 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cardone, A., Ferro, M., Ixaru, L.G.R., Paternoster, B.: A family of exponential fitting direct quadrature methods for volterra integral equations. AIP Conference Proceedings. 1281, 2204–2207 (2010)

  6. Cardone, A., Ixaru, L.G.R., Paternoster, B.: Exponential fitting direct quadrature methods for Volterra integral equations. Numer. Algorithm 55, 467–480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardone, A., Ixaru, L.G.R., Paternoster, B., Santomauro, G.: Ef-Gaussian direct quadrature methods for Volterra integral equations with periodic solution. Math. Comput. Simul. 110(1), 125–143 (2015)

  8. Cardone, A., Paternoster, B., Santomauro, G.: Exponential fitting quadrature rule for functional equations, AIP Conference Proceedings. 1479, 1169–1172 Springer (2012)

  9. Conte, D., Esposito, E., Paternoster, B., Ixaru, L.G.R.: Some new uses of the \(\eta _m(Z)\) functions. Comput. Phys. Commun. 181, 128–137 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conte, D., Ixaru, LGr, Paternoster, B., Santomauro, G.: Exponentially-fitted Gauss–Laguerre quadrature rule for integrals over an unbounded interval. J. Comput. Appl. Math. 255, 725–736 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Conte, D., Paternoster, B., Santomauro, G.: An Exponentially Fitted Quadrature Rule Over Unbounded Intervals, AIP Conference Proceedings 1479, 1173–1176 Springer (2012)

  12. D’Ambrosio, R., Esposito, E., Paternoster, B.: Exponentially fitted two-step hybrid for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 235, 4888–4897 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Ambrosio, R., Esposito, E., Paternoster, B.: Parameter estimation in exponentially fitted hybrid methods for second order differential problems. J. Math. Chem. 50(1), 155–168 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. D’Ambrosio, R., Esposito, E., Paternoster, B.: Exponentially fitted two-step Runge–Kutta methods: construction and parameter selection. Appl. Math. Comput. 218, 7468–7480 (2012)

    MathSciNet  MATH  Google Scholar 

  15. D’Ambrosio, R., Ferro, M., Paternoster, B.: Two-step hybrid collocation methods for \(y^{\prime \prime }= f(x, y)\). Appl. Math. Lett. 22, 1076–1080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. D’Ambrosio, R., Ferro, M., Paternoster, B.: Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations. Math. Comput. Simul. 81, 1068–1084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. D’Ambrosio, R., Ixaru, L.G.R., Paternoster, B.: Construction of the ef-based Runge–Kutta methods revisited. Comput. Phys. Commun. 182, 322–329 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. D’Ambrosio, R., Paternoster, B.: numerical solution of a diffusion problem by exponentially fitted finite difference methods. SpringerPlus 3(425), 1–7 (2014)

    Google Scholar 

  19. D’Ambrosio, R., Paternoster, B.: Exponentially fitted singly diagonally implicit Runge–Kutta methods. J. Comput. Appl. Math. 263, 277–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. D’Ambrosio, R., Paternoster, B., Santomauro, G.: Revised exponentially fitted Runge–Kutta–Nystrom methods. Appl. Math. Lett. 30, 56–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Davies, P.J., Duncan, D.B.: Stability and convergence of collocation schemes for retarded potential integral equations. SIAM J. Numer. Anal. 42, 1167–1188 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Davis, P. J., Rabinowitz, P.: Methods of numerical integration, Computer Science and Applied Mathematics. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers] New York (1975)

  23. Frontczak, R., Schoebel, R.: On modified Mellin transforms, Gauss–Laguerre quadrature, and the valuation of American call options. J. Comput. Appl. Math. 234, 1559–1571 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hasheminejad, S.M., Aghabeigi, M.: Liquid sloshing in half-full horizontal elliptical tanks. J. Sound Vib. 324, 332–349 (2009)

    Article  Google Scholar 

  25. Huybrechs, D., Vandewalle, S.: A sparse discretization for integral equation formulations of high frequency scattering problems. SIAM J. Sci. Comput. 29, 2305–2328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ixaru, L.G.R.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht (1984)

    MATH  Google Scholar 

  27. Ixaru, L.G.R.: Operations on oscillatory functions. Comput. Phys. Commun. 105, 1–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ixaru, L.G.R.: Runge–Kutta method with equation dependent coefficients. Comput. Phys. Commun. 183, 63–69 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ixaru, L.G.R., Paternoster, B.: A Gauss quadrature rule for oscillatory integrands. Comput. Phys. Commun. 133, 177–188 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ixaru, L.G.R., Vanden Berghe, G.: Exponential Fitting. Kluwer, Boston (2004)

    Book  MATH  Google Scholar 

  31. Kim, K.J.: Quadrature rules for the integration of the product of two oscillatory functions with different frequencies. Comput. Phys. Commun. 153, 135–144 (2003)

    Article  MATH  Google Scholar 

  32. Kim, K.J.: Two-frequency-dependent Gauss quadrature rules. J. Comput. Appl. Math. 174, 43–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kim, K.J., Cools, R., Ixaru, L.G.R.: Quadrature rules using first derivatives for oscillatory integrands. J. Comput. Appl. Math. 140, 479–497 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kim, K.J., Cools, R., Ixaru, L.G.R.: Extended quadrature rules for oscillatory integrands. Appl. Numer. Math. 46, 59–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ledoux, V., Van Daele, M.: Interpolatory quadrature rules for oscillatory integrals. J. Sci. Comput. 53, 586–607 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Majidian, H.: Numerical approximation of highly oscillatory integrals on semi-finite intervals by steepest descent method. Numer. Algorithm 63(3), 537–548 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Milovanovic, G.V., Cvetkovic, A.S., Stanic, M.P.: Gaussian quadratures for oscillatory integrands. Appl. Math. Lett. 20, 853–860 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Paternoster, B.: Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70-th anniversary. Comput. Phys. Commun. 183, 2499–2512 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Simos, T.E.: An exponentially-fitted Runge–Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115, 1–8 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sun, W., Zamani, N.G.: Adaptive mesh redistribution for the boundary element method in elastostatics. Comput. Struct. 36, 1081–1088 (1990)

    Article  Google Scholar 

  41. Van Daele, M., Vanden Berghe, G., Vande Vyver, H.: Exponentially fitted quadrature rules of Gauss type for oscillatory integrands. Appl. Numer. Math. 53, 509–526 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Van Daele, M., Van Hecke, T., Vanden Berghe, G., De Meyer, H.: Deferred correction with mono-implicit Runge–Kutta methods for first-order IVPs. Numerical methods for differential equations (Coimbra, 1998). J. Comput. Appl. Math. 111(1–2), 37–47 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by GNCS-INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajana Conte.

Appendix 1

Appendix 1

The set of functions \(\eta _m(Z),\,m=-1,0,1,2,\ldots \), has been originally introduced in [26] in the context of CP methods for the Schrödinger equation. The functions \(\eta _{m}(Z)\) with \(m=-1,0\) are first defined by some formulae, namely:

$$\begin{aligned} \eta _{-1}(Z) = \left\{ \begin{array} [c]{ll} \displaystyle \cos (|Z|^{1/2}) &{} \quad \mathrm {if\ } Z \le 0\,\\ \displaystyle \cosh (Z^{1/2}) &{} \quad \mathrm {if\ } Z > 0\, \end{array} \right. , \,\eta _{0}(Z) = \left\{ \begin{array} [c]{ll} \displaystyle \sin (|Z|^{1/2})/|Z|^{1/2} &{} \quad \mathrm {if\ } Z < 0\,\\ \displaystyle 1 &{} \quad \mathrm {if\ } Z=0\,\\ \displaystyle \sinh (Z^{1/2})/Z^{1/2} &{} \quad \mathrm {if\ } Z > 0 \end{array} \right. \end{aligned}$$
(7.1)

and those with \(m>0\) are further generated by recurrence

$$\begin{aligned} {\eta }_{m}(Z)=\dfrac{1}{Z}[{\eta }_{m-2}(Z)-(2m-1){\eta }_{m-1}(Z)],\quad m=\ 1,\ 2,\ 3,\ldots \end{aligned}$$
(7.2)

if \(\ Z\ne 0,\) and by following values at \(Z=0\):

$$\begin{aligned} \eta _{m}(0)=\dfrac{1}{(2m+1)!!}, \quad m=\ 1,\ 2,\ 3,\ldots \end{aligned}$$
(7.3)

The differentiation of these functions is of direct concern for this paper. The rule is

$$\begin{aligned} \eta ^{\prime }_{m}(Z) = {\frac{ 1 }{2}} \eta _{m+1}(Z)\,,\; m=-1,\,0,\,1,\,2,\,3,\ldots \end{aligned}$$
(7.4)

For more details on these functions see [9, 26, 30].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conte, D., Paternoster, B. Modified Gauss–Laguerre Exponential Fitting Based Formulae. J Sci Comput 69, 227–243 (2016). https://doi.org/10.1007/s10915-016-0190-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0190-0

Keywords

Navigation