Skip to main content
Log in

A Multiphase Image Segmentation Based on Fuzzy Membership Functions and L1-Norm Fidelity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a variational multiphase image segmentation model based on fuzzy membership functions and L1-norm fidelity. Then we apply the alternating direction method of multipliers to solve an equivalent problem. All the subproblems can be solved efficiently. Specifically, we propose a fast method to calculate the fuzzy median. Experimental results and comparisons show that the L1-norm based method is more robust to outliers such as impulse noise and keeps better contrast than its L2-norm counterpart. Theoretically, we prove the existence of the minimizer and analyze the convergence of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

    Article  Google Scholar 

  2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)

  4. Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20(4), 1033–1048 (1992)

    Article  Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  6. Bresson, X., Esedo\(\bar{\rm g}\)lu, S., Vandergheynst, P., Thiran, J.-P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)

  7. Cai, X.: Variational image segmentation model coupled with image restoration achievements. Pattern Recognit. 48(6), 2029–2042 (2015)

    Article  Google Scholar 

  8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  9. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Imaging Sci. 5(4), 1113–1158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, R., Yang, H., Zeng, T.: A two-stage image segmentation method for blurry images with poisson or multiplicative gamma noise. SIAM J. Imaging Sci. 7(1), 98–127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, R.H., Ho, C.-W., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)

    Article  Google Scholar 

  13. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  16. Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. B Cybern. 34(4), 1907–1916 (2004)

    Article  Google Scholar 

  17. Chen, Y., Ye, X.: Projection onto a simplex. arXiv preprint arXiv:1101.6081 (2011)

  18. Dubrovina, A., Rosman, G., Kimmel, R.: Multi-region active contours with a single level set function. IEEE Trans. Pattern. Anal. Mach. Intell. 37(8), 1585–1601(2015)

  19. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  20. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM: Math. Model. Numer. Anal.—Modélisation Mathématique et Analyse Numérique 9(R2), 41–76 (1975)

    MATH  Google Scholar 

  21. Goldstein, T., Osher, S.: The split bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, W., Qin, J., Tari, S.: Automatic prior shape selection for image segmentation. Res. Shape Model. 1, 1–8 (2015)

  23. Guo, X., Li, F., Ng, M.K.: A fast \(\ell _1\)-TV algorithm for image restoration. SIAM J. Sci. Comput. 31(3), 2322–2341 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, Y., Hussaini, M.Y., Ma, J., Shafei, B., Steidl, G.: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data. Pattern Recognit. 45(9), 3463–3471 (2012)

    Article  MATH  Google Scholar 

  25. Houhou, N., Thiran, J., Bresson, X.: Fast texture segmentation model based on the shape operator and active contour. In: Computer Vision and Pattern Recognition, 2008. IEEE Conference on CVPR 2008, pp. 1–8. IEEE (2008)

  26. Jung, M., Kang, M., Kang, M.: Variational image segmentation models involving non-smooth data-fidelity terms. J. Sci. Comput. 59(2), 277–308 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jung, Y.M., Kang, S.H., Shen, J.: Multiphase image segmentation via Modica–Mortola phase transition. SIAM J. Appl. Math. 67(5), 1213–1232 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kersten, P.R.: Fuzzy order statistics and their application to fuzzy clustering. IEEE Trans. Fuzzy Syst. 7(6), 708–712 (1999)

    Article  MathSciNet  Google Scholar 

  29. Krinidis, S., Chatzis, Vassilios: A robust fuzzy local information c-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)

    Article  MathSciNet  Google Scholar 

  30. Li, F., Ng, M.K., Zeng, T.Y., Shen, C.: A multiphase image segmentation method based on fuzzy region competition. SIAM J. Imaging Sci. 3(3), 277–299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, F., Shen, C., Li, C.: Multiphase soft segmentation with total variation and H1 regularization. J. Math. Imaging Vis. 37(2), 98–111 (2010)

    Article  Google Scholar 

  32. Lie, J., Lysaker, M., Tai, X.-C.: A piecewise constant level set framework. Int. J. Numer. Anal. Model. 2(4), 422–438 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Lie, J., Lysaker, M., Tai, X.-C.: A binary level set model and some applications to Mumford–Shah image segmentation. IEEE Trans. Image Process. 15(5), 1171–1181 (2006)

    Article  MATH  Google Scholar 

  34. Mory, B., Ardon, R.: Fuzzy region competition: a convex two-phase segmentation framework. In: Sgallari, F., Murli, A., Paragios, N. (eds.) Scale Space and Variational Methods in Computer Vision, pp. 214–226. Springer (2007)

  35. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  37. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pham, D.L.: Fuzzy clustering with spatial constraints. In: Image Processing. 2002. Proceedings. 2002 International Conference on, volume 2, p II-65. IEEE (2002)

  39. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sawatzky, A., Tenbrinck, D., Jiang, X., Burger, M.: A variational framework for region-based segmentation incorporating physical noise models. J. Math. Imaging Vis. 47(3), 179–209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shen, J., Chan, T.F.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shen, J.J.: A stochastic-variational model for soft Mumford–Shah segmentation. Int. J. Biomed. Imaging 2006, 92329 (2006)

    Article  Google Scholar 

  43. Storath, M., Weinmann, A.: Fast partitioning of vector-valued images. SIAM J. Imaging Sci. 7(3), 1826–1852 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  45. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yangyang, X., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with nonnegative factors. Front. Math. China 7(2), 365–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yan, M.: Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind inpainting. SIAM J. Imaging Sci. 6(3), 1227–1245 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yan, M., Bui, A.A.T., Cong, J., Vese, L.A.: General convergent expectation maximization (EM)-type algorithms for image reconstruction. Inverse Probl. Imaging 7(3), 1007–1029 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884–900 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

The research of F. Li was supported by the 973 Program 2011CB707104 and the Science and Technology Commission of Shanghai Municipality (STCSM) 13dz2260400, the research of S. Osher and J. Qin was supported by ONR Grants N00014120838 and N00014140444, NSF Grants DMS-1118971 and CCF-0926127, and the Keck Foundation, the research of M. Yan was supported by NSF Grants DMS-1317602. The work was done when the first author was visiting UCLA Department of Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Osher, S., Qin, J. et al. A Multiphase Image Segmentation Based on Fuzzy Membership Functions and L1-Norm Fidelity. J Sci Comput 69, 82–106 (2016). https://doi.org/10.1007/s10915-016-0183-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0183-z

Keywords

Navigation