Skip to main content
Log in

High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The main purpose of the paper is to show how to use implicit–explicit Runge–Kutta methods in a much more general context than usually found in the literature, obtaining very effective schemes for a large class of problems. This approach gives a great flexibility, and allows, in many cases the construction of simple linearly implicit schemes without any Newton’s iteration. This is obtained by identifying the (possibly linear) dependence on the unknown of the system which generates the stiffness. Only the stiff dependence is treated implicitly, then making the whole method much simpler than fully implicit ones. The resulting schemes are denoted as semi-implicit R–K. We adopt several semi-implicit R–K methods up to order three. We illustrate the effectiveness of the new approach with many applications to reaction–diffusion, convection diffusion and nonlinear diffusion system of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Caflisch, R.E., Jin, S., Russo, G.: Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34(1), 246–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carpenter, M.H., Kennedy, C.A.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C.Q., Levermore, C.D., Liu, T.P.: Hyperbolic conservation laws with relaxation terms and entropy. Commun. Pure Appl. Math. 47, 787–830 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Durran, D.R., Blossey, P.N.: Implicit–explicit multistep methods for fast-wave–slow-wave problems. Mon. Wea. Rev. 140, 1307–1325 (2012)

    Article  Google Scholar 

  5. Jin, S.: Runge–Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122, 51–67 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. In: Trigiante, D. (ed.) Recent Trends in Numerical Analysis, Advances Theory Computational Mathematics, vol. 3, pp. 269–288. Nova Sci. Publ., Huntington, NY (2001)

    Google Scholar 

  7. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxations. J. Sci. Comput. 25, 129–155 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Weller, H., Lock, S.J., Wood, N.: Runge–Kutta IMEX schemes for the horizontally explicit/vertically implicit (HEVI) solution of wave equations. J. Comput. Phys. 252, 365–381 (2013)

    Article  MathSciNet  Google Scholar 

  9. Hairer, E., Wanner, G.: Solving ordinary differential equation. II. Stiff and differential algebraic problems, Springer Series in Computational Mathematics, 14, Springer (second revised edition 1996), corrected second printing 2002

  10. Higueras, I., Mantas, J.M., Roldán, T.: Design and implementation of predictors for additive semi-implicit Runge–Kutta methods. SIAM J. Sci. Comput. 31(3), 2131–2150 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhong, X.: Additive semi-implicit Runge–Kutta methods for computing high-speed non equilibrium reactive flows. J. Comput. Phys. 128, 19–31 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boscarino, S., LeFloch, P.-G., Russo, G.: High-order asymptotic-preserving methods for fully non linear relaxation problems. SIAM J. Sci. Comput. 36, A377–A395 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berthon, C., LeFloch, P.-G., Turpault, R.: Late-time relaxation limits of nonlinear hyperbolic systems. A general framework. Math. Comput. 82, 831–860 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19(1–3), 439–456 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229, 7625–7648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giraldo, F.X., Restelli, M., Läuter, M.: Semi-implicit formulations of the Navier–Stokes equations: application to nonhydrostatic atmosphereric modeling. SIAM J. Sci. Comput. 32(6), 3394–3425 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giraldo, F.X., Kelly, J.F., Costantinescu, E.M.: Implicit–explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comput. 35(5), B1162–B1194 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Araújo, A., Barbeiro, S., Serranho, P.: Stability of finite difference schemes for complex diffusion processes. SIAM J. Numer. Anal. 50, 1284–1296 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boscarino, S., Russo, G.: High-order asymptotic-preserving methods for nonlinear relaxation from hyperbolic systems to convection–diffusion equations. In: Submitted to Proceedings, High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013), March 18–22, Bordeaux (2013)

  20. Boscarino, S., Bürger, R., Mulet, Pep, Russo, G., Villada, L.M.: Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection–diffusion problems. SIAM J. Sci. Comput. 37, B305–B331 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equation. I. Non-stiff Problems, Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)

    MATH  Google Scholar 

  22. Ascher, U., Ruuth, S., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential algebraic systems. SIAM J. Numer. Anal. 45, 1600–1621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Boscarino, S.: On an accurate third order implicit–explicit Runge–Kutta method for stiff problems. Appl. Numer. Math. 59, 1515–1528 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Boscarino, S., Russo, G.: Flux-explicit IMEX Runge–Kutta schemes for hyperbolic to parabolic relaxation problems. SIAM J. Numer. Anal. 51, 163–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hairer, E., Lubich, C., Roche, M.: Error of Runge–Kutta methods for stiff problems studied via differential algebraic equations. BIT Numer. Math. 28(3), 678–700 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Filbet, F., Guo, R., Xu, Y.: Efficient high order semi-implicit time discretization and local discontinuous Galerkin methods for highly nonlinear PDEs. Preprint (2015)

  28. Filbet, F., Rodrigues, L.M.: Asymptotically stable particle-in-cell methods for the Vlasov–Poisson system with a strong external magnetic field. Preprint (2015)

  29. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  30. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and application to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31, 1926–1945 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Higueras, I., Roldán, T.: Construction of additive semi-implicit Runge–Kutta methods with low-storage requirements. J. Sci. Comput. (2015). doi:10.1007/s10915-015-0116-2

  33. Filbet, F., Rambaud, A.: Analysis of an asymptotic preserving scheme for relaxation systems. ESAIM Math. Model. Numer. Anal. 47, 609–633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, K., Wong, J.C.F., Zhang, R.: Second-order implicit–explicit scheme for the Gray–Scott model. J. Comput. Appl. Math. 213, 559–581 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Carrillo, J.A., Laurençot, Ph, Rosado, J.: Fermi–Dirac–Fokker–Planck equation: well-posedness and long-time asymptotics. J. Differ. Equ. 247, 2209–2234 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Carrillo, J.A., Rosado, J., Salvarani, F.: 1D nonlinear Fokker–Planck equations for fermions and bosons. Appl. Math. Lett. 21, 148–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bessemoulin-Chatard, M., Filbet, F.: A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34, 559–583 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bertozzi, A.L.: The mathematics of moving contact lines in thin liquid films. Not. AMS 45, 689–697 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Pareschi, L., Russo, G., Toscani, G.: A kinetic approximation to Hele–Shaw flow. C. R. Math., Acad. Sci. Paris, Ser. I 338(2), 178–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bertozzi, A.L., Pugh, M.: The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions. Commun. Pure Appl. Math. XLIX, 85–123 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, Y., Shu, C.W.: Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. J. Sci. Comput. 40, 375–390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Francis Filbet is partially supported by the European Research Council ERC Starting Grant 2009, Project 239983-NuSiKiMo and the French ANR project STAB. Giovanni Russo and Sebastiano Boscarino have been partially supported by Italian PRIN 2009 project “Innovative numerical methods for hyperbolic problems with application to fluid dynamics, kinetic theory, and computational biology”, Prot. No. 2009588FHJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Boscarino.

Appendix

Appendix

Here we prove that it is possible to apply the IMEX schemes to the general system (8) with no doubling of the stage fluxes. We start observing that by choosing \(\hat{y}=(t,u)\) and \(z=u\), we can rewrite system (1) as

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \frac{d\hat{y}}{dt}(t) \,=\, \left( \begin{array}{c}1\\ \mathcal {H}(\hat{y}(t),z(t))\end{array}\right) , \\ \, \\ \displaystyle \frac{d z}{dt}(t) \,=\, \mathcal {H}(\hat{y}(t),z(t)), \end{array} \right. \end{aligned}$$
(37)

with initial conditions \(\hat{y}(t_0) = (t_0,u_0)\), \(z(t_0) = u_0\).

In this way, system (37) for \((\hat{y},z)\) is a particular case of an autonomous partitioned system in which \(\mathcal {F}_1=(1, \mathcal {H})\) and \(\mathcal {F}_2=\mathcal {H}\) but apparently with an additional computational cost since we double the number of variables. Now, we apply the partitioned Runge–Kutta method (6)–(7) to (37) obtaining

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle {\hat{k}}_i \,= \, \mathcal {H}\left( {\hat{Y}}_i,\, Z_i\right) , \quad 1\le i \le s, \\ \, \\ \displaystyle \ell _i \,=\, \mathcal {H}\left( {\hat{Y}}_i, \,Z_i\right) , \quad 1\le i \le s, \end{array}\right. \end{aligned}$$

with

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle {\hat{Y}}_i \,=\, {\hat{y}}^n \,+\, \Delta t \,\sum _{j = 1}^{s}{\hat{a}}_{i,j}\,{\hat{k}}_j, \quad 1\le i \le s, \\ \displaystyle Z_i \,=\, z^n \,+\, \Delta t \,\sum _{j = 1}^{s}a_{ij}\,\ell _j, \quad 1\le i \le s, \end{array}\right. \end{aligned}$$

Using the assumption (5), that is, \(\sum _j \hat{a}_{i,j}=\hat{c}_i\), we obtain that the first component of \({\hat{Y}}\) at the stage i is equal to \(t^n+{\hat{c}}_i\Delta t\), and therefore, under the consistency condition \(\sum _i {\hat{b}}_i=1\), the first component of \({\hat{y}}\) at time \(t^{n+1}\) is equal to time \(t^{n+1}\).

Replacing \(\hat{y}\) by (ty), we have

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle k_i \,= \, \mathcal {H}\left( t^n+{\hat{c}}_i\,\Delta t,\,Y_i,\, Z_i\right) , \quad 1\le i \le s, \\ \, \\ \displaystyle \ell _i \,=\, \mathcal {H}\left( t^n+\,{\hat{c}}_i\Delta t,\,Y_i, \,Z_i\right) , \quad 1\le i \le s, \end{array}\right. \end{aligned}$$
(38)

with

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle Y_i \,=\, y^n \,+\, \Delta t \,\sum _{j = 1}^{s}{\hat{a}}_{i,j}\,k_j, \quad 1\le i \le s, \\ \displaystyle Z_i \,=\, z^n \,+\, \Delta t \,\sum _{j = 1}^{s}a_{ij}\,\ell _j, \quad 1\le i \le s, \end{array}\right. \end{aligned}$$

Equation (38) already shows that \(k_i=\ell _i, i=1,\ldots , s\). The numerical solutions at the next time step are

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle y^{n+1} \,=\, y^n \,+\, \Delta t \,\sum _{i = 1}^{s}{\hat{b}}_{i}\,k_i, \\ \displaystyle z^{n+1} \,=\, z^n \,+\, \Delta t \,\sum _{i = 1}^{s}b_{i}\,k_i. \end{array}\right. \end{aligned}$$

At this stage let us address several issues: number of evaluations, storage, order of accuracy and embedded methods.

Remark 5.1

Concerning the number of evaluations of \(\mathcal {H}\), we observe that by writing \((\mathcal {G})\) as an autonomous partitioned system, we have \(\ell _i=k_i\) for all \(1\le i\le s\). Therefore only one evaluation of \(\mathcal {H}\) is needed in (38), and only one set of stage fluxes is computed. Note that in (37), we could also choose \(y=u\) and \(\hat{z} = (t,u)\) and therefore use the \((c_i)_i\) coefficients for time stages.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscarino, S., Filbet, F. & Russo, G. High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations. J Sci Comput 68, 975–1001 (2016). https://doi.org/10.1007/s10915-016-0168-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0168-y

Keywords

Mathematics Subject Classification

Navigation