Skip to main content
Log in

Asymptotic Analysis and Error Estimates of Mixed Finite Element Method for Brinkman Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study a one-continuum model approach, so-called Brinkman model, to deal with Navier–Stokes–Darcy coupling problem in which the fluid flow exist in both the open channels and porous media. A parameter re-scaling technique is used to reformulate the traditional Brinkman model to a new one in order to investigate its asymptotic accuracy to Stokes and Darcy’s equations, respectively. We attain the convergence theorem in quantitative measure with respect to the dimensionless permeability parameter. We also analyze the error estimates of mixed finite element method for Brinkman model and Forchheimer model, and obtain the optimal convergence rates for both velocity and pressure. Numerical experiments validate the convergence results with respect to the permeability parameter and mesh size for both Brinkman model and Forchheimer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Angot, Ph, Bruneau, Ch-H, Fabrie, P.: A penalization method to take into account obstacles in an incompressible flow. Numer. Math. 81, 497–520 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angot, Ph., Caltagirone, J.P.: New graphical and computational architecture concept for numerical simulation on supercomputers. Proceedings 2nd World Congress on Computational Mechanics, pages 973–976, Stuttgart, (1990)

  3. Arquis, E., Caltagirone, J.P.: Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide-milieu poreux: application à la convection naturelle. C. R. Acad. Sci. Paris II 299, 1–4 (1984)

    Google Scholar 

  4. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  5. Breezi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian problems. RAIRO Anal. Numer. 2, 129–151 (1974)

    Google Scholar 

  6. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1949)

    Article  MATH  Google Scholar 

  7. Bruneau, Ch-H, Mortazavi, I.: Contrôle passif d’écoulements incompressibles autour d’obstacles à l’aide de milieux poreux. C. R. Acad. Sci. Paris IIb 329, 517–521 (2001)

    Google Scholar 

  8. Bruneau, Ch-H, Mortazavi, I.: Numerical modelling and passive flow control using porous media. Comput. Fluids 37, 488–498 (2008)

    Article  MATH  Google Scholar 

  9. Cai, M., Mu, M., Xu, J.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233, 346–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carbou, G.: Brinkman model and double penalization method for the flow around a porous thin layer. J. Math. Fluid Mech. 10, 126–158 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15(150), 32–48 (1937)

    Google Scholar 

  12. Chen, N., Gunzburger, M., Wang, X.: Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes–Brinkman system. J. Math. Anal. Appl. 368, 658–676 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Childress, S.: Viscous flow past a random array of spheres. J. Chem. Phys. 56, 2527–2539 (1972)

    Article  Google Scholar 

  14. Durlofsky, L., Brady, J.F.: Analysis of the brinkman equation as a model for flow in porous media. Phys. Fluids 30, 3329–3341 (1987)

    Article  MATH  Google Scholar 

  15. Freed, K.F., Muthukumar, M.: On the Stokes problem for a suspension of spheres at finite concentrations. J. Chem. Phys. 68, 2088–2096 (1978)

    Article  Google Scholar 

  16. He, W., Yi, J.S., Nguyen, T.: Two-phase flow model of the cathode of PEM fuel cell using interdigitated flow fields. AIChE J. 46(10), 2053–2064 (2000)

    Article  Google Scholar 

  17. Hinch, E.J.: An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83, 695–720 (1977)

    Article  MATH  Google Scholar 

  18. Howells, I.D.: Drag due to the motion of a Kewtonian fluid through a sparse random array of small fixed rigid objects. J. Fluid Mech. 64, 449–475 (1974)

    Article  MATH  Google Scholar 

  19. Jager, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jones, I.: Reynolds number flow past a porous spherical shell. Soc. Proc. Camb. Philos. 73, 231–238 (1973)

    Article  MATH  Google Scholar 

  21. Kim, S., Russel, W.B.: Modelling of porous media by renormalization of the Stokes equations. J. Fliud Mech. 154, 269–286 (1985)

    Article  MATH  Google Scholar 

  22. Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, F.Q., Wang, C.-Y.: Mixed potential in a direct methanol fuel cell modeling and experiments. J. Electrochem. Soc. 154, B514–B522 (2007)

    Article  Google Scholar 

  24. Liu, W., Wang, C.-Y.: Three-dimensional simulations of liquid feed direct methanol fuel cells. J. Electrochem. Soc. 154, B352–B361 (2007)

    Article  Google Scholar 

  25. Mehdaoui, R., Elmir, M., Draoui, B., Imine, O., Mojtabi, A.: Comparative study between the Darcy–Brinkman model and the modified Navier–Stokes equations in the case of natural convection in a porous cavity. Leonardo J. Sci. 12, 121–134 (2008)

    Google Scholar 

  26. Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comp. 79, 707–731 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Muthukumar, M., Freed, K.F.: On the Stokes problem for a suspension of spheres at nonzero concentration. II. Calculations for effective medium theory. J. Chem. Phys. 70, 5875 (1979)

    Article  Google Scholar 

  29. Nield, D.A.: The boundary correction for the Rayleigh–Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 37–46 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pasaogullari, U., Mukherjee, P., Wang, C.-Y., Chen, K.: Anisotropic heat and water transport in a pefc cathode gas diffusion layer. J. Electrochem. Soc. 154, B823–B834 (2007)

    Article  Google Scholar 

  31. Pasaogullari, U., Wang, C.-Y.: Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. J. Electrochem. Soc. 151, A399–A406 (2004)

    Article  Google Scholar 

  32. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  33. Rubinstein, J.: Effective equations for flow in random porous media with a large number of scales. J. Fluid Mech. 170, 379–383 (1986)

    Article  MATH  Google Scholar 

  34. Saffman, P.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 77–84 (1971)

    Google Scholar 

  35. Shi, Z., Wang, X.: Comparison of Darcy’s law, the Brinkman equation, the modified N–S equation and the pure diffusion equation in PEM fuel cell modeling. In: COMSOL Conference (2007)

  36. Sun, P.: Modeling studies and efficient numerical methods for proton exchange membrane fuel cell. Comput. Methods Appl. Mech. Eng. 200, 3324–3340 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tam, C.K.W.: The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38, 537 (1969)

    Article  MATH  Google Scholar 

  38. Wang, C.-Y.: Fundamental models for fuel cell engineering. Chem. Rev. 104, 4727–4766 (2004)

    Article  Google Scholar 

  39. Wang, C.-Y., Cheng, P.: A multiphase mixture model for multiphase, multicomponent transport in capillary porous media I. Model development. Int. J. Heat Mass Transf. 39, 3607–3618 (1996)

    Article  Google Scholar 

  40. Wang, C.-Y., Cheng, P.: Multiphase flow and heat transfer in porous media. Adv. Heat Transf. 30, 93–196 (1997)

    Article  Google Scholar 

  41. Wang, C.-Y., Wang, Z.H., Pan, Y.: Two-phase transport in proton exchange membrane fuel cells. In: International Mechanical Engineering Congress and Exhibits, Nashville, TN (1999)

  42. Wang, Z.H., Wang, C.-Y., Chen, K.S.: Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources 94, 40–50 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

P. Sun is supported by NSF Grant DMS-1418806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengtao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Sun, Y. Asymptotic Analysis and Error Estimates of Mixed Finite Element Method for Brinkman Model. J Sci Comput 68, 116–142 (2016). https://doi.org/10.1007/s10915-015-0131-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0131-3

Keywords

Navigation