Skip to main content
Log in

Construction of Additive Semi-Implicit Runge–Kutta Methods with Low-Storage Requirements

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Space discretization of some time-dependent partial differential equations gives rise to systems of ordinary differential equations in additive form whose terms have different stiffness properties. In these cases, implicit methods should be used to integrate the stiff terms while efficient explicit methods can be used for the non-stiff part of the problem. However, for systems with a large number of equations, memory storage requirement is also an important issue. When the high dimension of the problem compromises the computer memory capacity, it is important to incorporate low memory usage to some other properties of the scheme. In this paper we consider Additive Semi-Implicit Runge–Kutta (ASIRK) methods, a class of implicit-explicit Runge–Kutta methods for additive differential systems. We construct two second order 3-stage ASIRK schemes with low-storage requirements. Having in mind problems with stiffness parameters, besides accuracy and stability properties, we also impose stiff accuracy conditions. The numerical experiments done show the advantages of the new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ascher, U., Ruuth, S., Spiteri, R.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential-algebraic systems. SIAM J. Numer. Anal. 45(4), 1600–1621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boscarino, S.: On an accurate third order implicit–explicit Runge–Kutta method for stiff problems. Appl. Numer. Math. 59(7), 1515–1528 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31(3), 1926–1945 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caflisch, R.E., Jin, S., Russo, G.: Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34(1), 246–281 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calvo, M., Franco, J., Rández, L.: Minimum storage Runge–Kutta schemes for computational acoustics. Comput. Math. Appl. 45(1), 535–545 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calvo, M., Franco, J.M., Montijano, J.I., Rndez, L.: On some new low storage implementations of time advancing Runge–Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carpenter, M.H., Kennedy, C.A.: Fourth-order 2n-storage Runge–Kutta schemes. Nasa Technical Memorandum 109112 (1994)

  9. Ferracina, L., Spijker, M.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58(11), 1675–1686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gottlieb, S., Shu, C.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hairer, E.: Order conditions for numerical methods for partitioned ordinary differential equations. Numer. Math. 36(4), 431–445 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Happenhofer, N., Koch, O., Kupka, F.: IMEX Methods for the ANTARES Code. ASC Report 27 (2011)

  14. Higueras, I., Mantas, J., Roldán, T.: Design and implementation of predictors for additive semi-implicit Runge–Kutta methods. SIAM J. Sci. Comput. 31(3), 2131–2150 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hundsdorfer, W., Ruuth, S.J.: Imex extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ketcheson, D.I.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ketcheson, D.I.: Runge–Kutta methods with minimum storage implementations. J. Comput. Phys. 229(5), 1763–1773 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koch, O., Kupka, F., Löw-Baselli, B., Mayrhofer, A., Zaussinger, F.: SDIRK methods for the ANTARES code. ASC Report 32 (2010)

  21. Kraaijevanger, J.: Contractivity of Runge–Kutta methods. BIT Numer. Math. 31(3), 482–528 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. Recent Trends Numer. Anal. 3, 269–289 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Pareschi, L., Russo, G.: High order asymptotically strong-stability-preserving methods for hyperbolic systems with stiff relaxation. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 241–251. Springer: Berlin (2003)

  24. Shu, C., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Spiteri, R., Ruuth, S.: A new class of optimal high-order strong-stability preserving time-stepping schemes. SIAM J. Numer. Anal 40, 469–491 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Van Der Houwen, P.J.: Construction of integration formulas for initial value problems. North Holland (1977)

  27. Williamson, J.: Low-storage Runge–Kutta schemes. J. Comput. Phys. 35(1), 48–56 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhong, X.: Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilibrium reactive flows. J. Comput. Phys. 128(1), 19–31 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. Supported by Ministerio de Economía y Competividad, project MTM2011-23203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teo Roldán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higueras, I., Roldán, T. Construction of Additive Semi-Implicit Runge–Kutta Methods with Low-Storage Requirements. J Sci Comput 67, 1019–1042 (2016). https://doi.org/10.1007/s10915-015-0116-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0116-2

Keywords

Mathematics Subject Classification

Navigation