Skip to main content
Log in

Postprocessing Mixed Finite Element Methods For Solving Cahn–Hilliard Equation: Methods and Error Analysis

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A postprocessing technique for mixed finite element methods for the Cahn–Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on a coarser space, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aristotelous, A.C., Karakshian, O., Wise, S.M.: A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discret. Cont. Dyn. Syst. 18, 2211–2238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayuso, B., Garcia-Archilla, B., Novo, J.: The postprocessed mixed finite element method for the Navier–Stokes equations. SIAM J. Numer. Anal. 43, 1091–1111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ayuso, B., De Frutos, J., Novo, J.: Improving the accuracy of the mini-element approximation to Navier–Stokes equations. IMA J. Numer. Anal. 27, 198–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system I: interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  5. Chen, L.: iFEM: An integrated finite element methods package in MATLAB. Technical report, University of California at Irvine (2009)

  6. Chen, F., Shen, J.: Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems. Comm. Comput. Phys. 13, 1189–1208 (2013)

    MathSciNet  Google Scholar 

  7. Choo, S.M., Lee, Y.J.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Appl. Math. Comput. 18, 113–126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elliott, C.M., Songmu, Zheng: On the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 96, 339–357 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54, 575–590 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation. Math. Comput. 58, 603–630 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Proc. 529, 39 (2011)

    Article  MathSciNet  Google Scholar 

  12. Feng, X., Prohl, A.: Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comput. 73, 541–567 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99, 47–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn–Hillard equation of phase transition. Math. Comput. 76, 1093–1117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Frutos, J., Garcia-Archilla, B., Novo, J.: A postprocessed Galerkin method with Chebyshev or Legendre polynomials. Numer. Math. 86, 419–442 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Frutos, J., Novo, J.: A spectral element method for the Navier–Stokes equations with improved accuracy. SIAM J. Numer. Math. 38, 799–819 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Frutos, J., Novo, J.: A postprocess based improvement of the spectral element method. Appl. Numer. Math. 33, 217–223 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Frutos, J., Novo, J.: Postprocessing the linear finite element method. SIAM J. Numer. Math. 40, 805–819 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. de Frutos, J., Garcia-Archilla, B., Novo, J.: The postprocessed mixed finite element method for the Navier–Stokes equations: improved error bounds. SIAM J. Numer. Math. 46, 201–230 (2007)

    Article  MATH  Google Scholar 

  20. de Frutos, J., Garcia-Archilla, B., Novo, J.: Postprocessing finite element method for the Navier–Stokes equations: the fully discrete case. SIAM J. Numer. Math. 47, 596–621 (2008)

    Article  MATH  Google Scholar 

  21. de Frutos, J., Garcia-Archilla, B., Novo, J.: Nonlinear convection–diffusion problems: fully discrete approximations and a posteriori error estimates. IMA J. Numer. Math. 30, 1402–1430 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. de Frutos, J., Garcia-Archilla, B., Novo, J.: Static two-grid mixed finite element approximations to the Navier–Stokes equations. J. Sci. Comput. 52, 619–637 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Garcia-Archilla, B., Novo, J., Titi, E.S.: Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal. 35, 941–942 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Garcia-Archilla, B., Novo, J., Titi, E.S.: An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier–Stokes equations. Math. Comput. 68, 893–911 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garcia-Archilla, B., Titi, E.S.: Postprocessing the Galerkin method: the finite element case. SIAM J. Numer. Anal. 37, 470–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, L.-P., Liu, Y.: A class of stable spectral methods for the Cahn–Hilliard equation. J. Comput. Phys. 228, 5101–5110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35(2), 767–801 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem, IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kay, D., Styles, V., Suli, E.: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)

    MathSciNet  Google Scholar 

  34. Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32(4), 1170–1184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nocick-Cohen, A.: The Cahn–Hilliard equation. In: Dafermose, C.M., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 4. Elsevier, Amsterdam (2008)

    Google Scholar 

  36. Schatz, A.H., Wahlbin, L.B.: On the quasi-optimality in \(L^\infty \) of the \(\dot{H}_1\)-projection into finite element spaces. Math. Comput. 38, 1–21 (1982)

    MathSciNet  MATH  Google Scholar 

  37. Shen, J., Yang, X.F.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discret. Cont. Dyn. Syst. 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  39. Wahlbin, L.B.: Superconvergence in Galerkin finite element methods. Lect. Notes Math. 1605. Springer, Berlin (1995)

  40. Wang, M., Xu, J.: Nonconforming tetrahedral finite elements for fourth order elliptic equations. Math. Comput. 76, 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218, 860–877 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227, 472–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu, J.: A novel two-grid method for semi-linear equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu, J.: Two-grid finite element discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yan, Y.: Postprocessing the finite element-method for semilinear parabolic problems. SIAM J. Numer. Anal. 44, 1681–1702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn–Hilliard equation. J. Comput. Phys. 229, 7361–7372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhou, J., Chen, L., Huang, Y.Q., Wang, W.S.: An efficient two-grid scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 17(1), 127–145 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen.

Additional information

W. S. Wang was supported by Ky and Yu-Fen Fan Fund Travel Grant from the AMS, the National Natural Science Foundation of China Grants 11001033 and 11371074, the Natural Science Foundation for Distinguished Young scholars of Hunan Province in China Grant 13JJ1020, and the Research Foundation of Education Bureau of Hunan Province in China Grant 13A108.

L. Chen was supported by NSF Grant DMS-1418934, and in part by U.S. Department of Energy (DOE) prime award # DE-SC0006903 and NIH Grant P50GM76516.

J. Zhou was supported by NSFC Project (91430213) and 2012–2013 China Scholarship Council, and partially by NSF Grant DMS-1115961.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Chen, L. & Zhou, J. Postprocessing Mixed Finite Element Methods For Solving Cahn–Hilliard Equation: Methods and Error Analysis. J Sci Comput 67, 724–746 (2016). https://doi.org/10.1007/s10915-015-0101-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0101-9

Keywords

AMS Subject Classifications

Navigation