Skip to main content
Log in

A Sparse Grid Stochastic Collocation Method for Elliptic Interface Problems with Random Input

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, numerical solutions of elliptic partial differential equations with both random input and interfaces are considered. The random coefficients are piecewise smooth in the physical space and moderately depend on a large number of random variables in the probability space. To relieve the curse of dimensionality, a sparse grid collocation algorithm based on the Smolyak construction is used. The numerical method consists of an immersed finite element discretization in the physical space and a Smolyak construction of the extreme of Chebyshev polynomials in the probability space, which leads to the solution of uncoupled deterministic problems as in the Monte Carlo method. Numerical experiments on two-dimensional domains are also presented. Convergence is verified and compared with the Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Acharjee, S., Zabaras, N.: Uncertainty propagation in finite deformations—a spectral stochastic Lagrangian approach. Comput. Methods Appl. Mech. Eng. 195(19), 2289–2312 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bieri, M.: A sparse composite collocation finite element method for elliptic SPDEs. SIAM J. Numer. Anal. 49(6), 2277–2301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6(1), 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bungartz, H., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, Y., Hussaini, M.Y., Zang, T.A.: An efficient Monte Carlo method for optimal control problems with uncertainty. Comput. Optim. Appl. 26(3), 219–230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chou, S., Kwak, D.Y., Wee, K.T.: Optimal convergence analysis of an immersed interface finite element method. Adv. Comput. Math. 33(2), 149–168 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, A., Davenport, M.A., Leviatan, D.: On the stability and accuracy of least squares approximations. Found. Comput. Math. 13(5), 819–834 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Doostan, A., Owhadi, H.: A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fishman, G.: Monte Carlo: Concepts, Algorithm, and Applications. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  12. Frauenfelder, P., Schwab, C., Todor, R.A.: Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194(2), 205–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghanem, R .G., Spanos, P .D.: Stochastic finite elements: a spectral approach, vol. 41. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  14. He, X., Lin, T., Lin, Y., Zhang, X.: Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Partial Differ. Equ. 29(2), 619–646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jakeman, J.D., Narayan, A., Xiu, D.: Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions. J. Comput. Phys. 242, 790–808 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ji, H., Chen, J., Li, Z.: A symmetric and consistent immersed finite element method for interface problems. J. Sci. Comput. 61, 533–557 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kwak, D.Y., Wee, K.T., Chang, K.S.: An analysis of a broken \({P}_1\)-nonconforming finite element method for interface problems. SIAM J. Numer. Anal. 48(6), 2117–2134 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Z., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, vol. 33. SIAM, Philadelphia, PA (2006)

  19. Li, Z., Lin, T., Lin, Y., Rogers, R.C.: An immersed finite element space and its approximation capability. Numer. Methods Partial Differ. Equ. 20(3), 338–367 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53(2), 1121–1144 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martin, J., Wilcox, L.C., Burstedde, C., Ghattas, O.: A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J. Sci. Comput. 34(3), A1460–A1487 (2012)

  23. Migliorati, G., Nobile, F., Schwerin, E., Tempone, R.: Approximation of quantities of interest in stochastic PDEs by the random discrete \({L}^2\) projection on polynomial spaces. SIAM J. Sci. Comput. 35(3), A1440–A1460 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Motamed, M., Nobile, F., Tempone, R.: A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer. Math. 123(3), 493–536 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Narayan, A., Xiu, D.: Stochastic collocation methods on unstructured grids in high dimensions via interpolation. SIAM J. Sci. Comput. 34(3), A1729–A1752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Narayanan, V.A.B., Zabaras, N.: Stochastic inverse heat conduction using a spectral approach. Int. J. Numer. Methods Eng 60(9), 1569–1593 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods, vol. 63. SIAM, Philadelphia, PA (1992)

  28. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nouy, A., Clement, A., Schoefs, F., Moës, N.: An extended stochastic finite element method for solving stochastic partial differential equations on random domains. Comput. Methods Appl. Mech. Eng. 197(51), 4663–4682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Phoon, K.K., Huang, S.P., Quek, S.T.: Implementation of Karhunen–Loeve expansion for simulation using a wavelet-Galerkin scheme. Probab. Eng. Mech. 17(3), 293–303 (2002)

    Article  Google Scholar 

  32. Rauhut, H., Ward, R.: Sparse Legendre expansions via \(l\)1-minimization. J. Approx. Theory 164(5), 517–533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 4, 240–243 (1963)

    MATH  Google Scholar 

  34. Stefanou, G.: The stochastic finite element method: past, present and future. Comput. Methods Appl. Mech. Eng. 198(9), 1031–1051 (2009)

    Article  MATH  Google Scholar 

  35. Tang, T., Zhou, T.: Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with a random wave speed. Commun. Comput. Phys 8(1), 226–248 (2010)

    MathSciNet  Google Scholar 

  36. Tang, T., Zhou, T.: On discrete least square projection in unbounded domain with random evaluations and its application to parametric uncertainty quantification. SIAM J. Sci. Comput. 36, A2272–A2295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  38. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiu, D., Karniadakis, G.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191(43), 4927–4948 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xiu, D., Karniadakis, G.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, Z., Zhou, T.: On sparse interpolation and the design of deterministic interpolation points. SIAM J. Sci. Comput. 36, A1752–A1769 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yan, L., Guo, L., Xiu, D.: Stochastic collocation algorithms using \(l\)-1minimization. Int. J. Uncertain. Quantif. 2(3), 279–293 (2012)

    Article  MathSciNet  Google Scholar 

  43. Zhou, T.: Stochastic Galerkin methods for elliptic interface problems with random input. J. Comput. Appl. Math. 236(5), 782–792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhou, T., Narayan, A., Xu, Z.: Multivariate discrete least-squares approximations with a new type of collocation grid. SIAM J. Sci. Comput. 36, A2401–A2422 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, T., Tang, T.: Galerkin methods for stochastic hyperbolic problems using bi-orthogonal polynomials. J. Sci. Comput. 51(2), 274–292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first and third authors are partially supported by the National Natural Science Foundation of China Grants No. 11471166 and No. 11426134, Natural Science Foundation of Jiangsu Province grant No. BK20141443, the Innovation Project for Graduate Education of Jiangsu Province No. KYLX15_0718 and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The second author is partially supported by the AFSOR grant FA9550-09-1-0520 and the NIH grant 5R01GM96195-2, NCSU RISF Fund, and CNSF Grants No. 11161036 and No. 11371199. The authors would like to thank two anonymous referees for their useful comments and suggestions which have helped to improve the paper greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, Z. & Zhang, Z. A Sparse Grid Stochastic Collocation Method for Elliptic Interface Problems with Random Input. J Sci Comput 67, 262–280 (2016). https://doi.org/10.1007/s10915-015-0080-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0080-x

Keywords

Navigation