Skip to main content
Log in

A Mixed Finite Element Discretisation of Thin Plate Splines Based on Biorthogonal Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The thin plate spline method is a widely used data fitting technique as it has the ability to smooth noisy data. Here we consider a mixed finite element discretisation of the thin plate spline. By using mixed finite elements the formulation can be defined in-terms of relatively simple stencils, thus resulting in a system that is sparse and whose size only depends linearly on the number of finite element nodes. The mixed formulation is obtained by introducing the gradient of the corresponding function as an additional unknown. The novel approach taken in this paper is to work with a pair of bases for the gradient and the Lagrange multiplier forming a biorthogonal system thus ensuring that the scheme is numerically efficient, and the formulation is stable. Some numerical results are presented to demonstrate the performance of our approach. A preconditioned conjugate gradient method is an efficient solver for the arising linear system of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)

    Book  MATH  Google Scholar 

  2. Altas, I., Hegland, M., Roberts, S.: Finite element thin plate splines for surface fitting. In: Computational Techniques and Applications: CTAC97, pp. 289–296 (1998)

  3. Arnold, D., Brezzi, F.: Some new elements for the Reissner-Mindlin plate model. In: Boundary Value Problems for Partial Differerntial Equations and Applications, pp. 287–292. Masson, Paris (1993)

  4. Boffi, D., Lovadina, C.: Analysis of new augmented lagrangian formulations for mixed finite element schemes. Numerische Mathematik 75, 405–419 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braess, D.: Finite Elements. Theory, Fast Solver, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  6. Brenner, S., Sung, L.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321–338 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  8. Cheng, X., Han, W., Huang, H.: Some mixed finite element methods for biharmonic equation. J. Comput. Appl. Math. 126, 91–109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.: The finite element method for elliptic problems. North Holland, Amsterdam (1978)

  10. Ciarlet, P., Raviart, P.-A.: A mixed finite element method for the biharmonic equation. In: Boor, C.D. (ed.) Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–143. Academic Press, New York (1974)

    Google Scholar 

  11. Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive Theory of Functions of Several Variables. Lecture Notes in Mathematics, vol. 571. Springer-Verlag, Berlin (1977)

  12. Falk, R.: Approximation of the biharmonic equation by a mixed finite element method. SIAM J. Numer. Anal. 15, 556–567 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galántai, A.: Projectors and Projection Methods. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  14. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  15. Hutchinson, M.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput. 18, 1059–1076 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson, C., Pitkäranta, J.: Some mixed finite element methods related to reduced integration. Math. Comput. 38, 375–400 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karper, T., Mardal, K.-A., Winther, R.: Unified finite element discretizations of coupled darcy-stokes flow. Numer. Methods Partial Differ. Equ. 25, 311–326 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, C., Lazarov, R., Pasciak, J., Vassilevski, P.: Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39, 519–538 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lamichhane, B.: Higher Order Mortar Finite Elements with Dual Lagrange Multiplier Spaces and Applications. LAP LAMBERT Academic Publishing (2011)

  20. Lamichhane, B.: A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems. J. Comput. Appl. Math. 23, 5188–5197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lamichhane, B.: Two simple finite element methods for Reissner-Mindlin plates with clamped boundary condition. Appl. Numer. Math. 72, 91–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lamichhane, B., Hegland, M.: A stabilised mixed finite element method for thin plate splines based on biorthogonal systems. In: McLean, W., Roberts, A.J. (eds.) Proceedings of the 16th Biennial Computational Techniques and Applications Conference, CTAC-2012, ANZIAM J. (2013)

  23. Lamichhane, B., Roberts, S., Stals, L.: A mixed finite element discretisation of thin-plate splines. In: McLean, W., Roberts, A.J. (eds.), Proceedings of the 15th Biennial Computational Techniques and Applications Conference, CTAC-2010, vol. 52 of ANZIAM J, pp. C518–C534 (2011)

  24. Monk, P.: A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24, 737–749 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Roberts, S., Hegland, M., Altas, I.: Approximation of a thin plate spline smoother using continuous piecewise polynomial functions. SIAM J. Numer. Anal. 41, 208–234 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Scott, L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Szyld, D.: The many proofs of an identity on the norm of oblique projections. Numer. Algorithms 42, 309–323 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wahba, G.: Spline Models for Observational Data, vol. 59 of Series in Applied Mathematic, SIAM, Philadelphia, first ed., (1990)

  29. Wohlmuth, B.: Discretization Methods and Iterative Solvers Based on Domain Decomposition. vol. 17 of LNCS, vol. 17. Springer, Heidelberg (2001)

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous referees for their valuable suggestions to improve the quality of the earlier version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishnu P. Lamichhane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamichhane, B.P., Roberts, S.G. & Stals, L. A Mixed Finite Element Discretisation of Thin Plate Splines Based on Biorthogonal Systems. J Sci Comput 67, 20–42 (2016). https://doi.org/10.1007/s10915-015-0068-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0068-6

Keywords

Mathematics Subject Classification

Navigation