Skip to main content
Log in

Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we study linearized backward differential formula (BDF) type schemes with Galerkin finite element approximations for the time-dependent nonlinear thermistor equations. Optimal \(L^2\) error estimates for the proposed schemes are proved unconditionally. The proof consists of two steps. First, the boundedness of the numerical solution in certain strong norms is obtained by a temporal-spatial error splitting argument. Second, a traditional approach is used to provide an optimal \(L^2\) error estimate for \(r\)-th order FEMs \((r \ge 1)\). Numerical experiments in both two and three dimensional spaces are conducted to confirm our theoretical analysis and show the high order accuracy and unconditional stability (convergence) of the linearized BDF–Galerkin FEMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akrivis, G., Crouzeix, M.: Linearly implicit methods for nonlinear parabolic equations. Math. Comput. 73, 613–635 (2003)

    Article  MathSciNet  Google Scholar 

  2. Akrivis, G., Larsson, S.: Linearly implicit finite element methods for the time dependent Joule heating problem. BIT 45, 429–442 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allegretto, W., Xie, H.: Existence of solutions for the time dependent thermistor equation. IMA J. Appl. Math. 48, 271–281 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allegretto, W., Yan, N.: A posteriori error analysis for FEM of thermistor problems. Int. J. Numer. Anal. Model. 3, 413–436 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Allegretto, W., Lin, Y., Ma, S.: Existence and long time behavior of solutions to obstacle thermistor equations. Discret. Contin. Dyn. Syst. Ser. A 8, 757–780 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baker, G., Dougalis, V., Karakashian, O.: On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comput. 39, 339–375 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)

    Book  MATH  Google Scholar 

  8. Byun, S., Wang, L.: Elliptic equations with measurable coefficients in Reifenberg domains. Adv. Math. 225, 2648–2673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cimatti, G.: Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor. Ann. Mat. Pura Appl. 162, 33–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Y.-Z., Wu, L.-C.: Second order elliptic equations and elliptic systems. In: Translation of Mathematical Monographs. Translated from the 1991 Chinese Original by Bei Hu, vol. 174. American Mathematical Society, Providence, RI (1998)

  11. Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long time accurate second-order methods for Stokes-Darcy system. SIAM J. Numer. Anal. 51, 2563–2584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elliott, C.M., Larsson, S.: A finite element model for the time-dependent joule heating problem. Math. Comput. 64, 1433–1453 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, H.: Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations. J. Sci. Comput. 58, 627–647 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, H.: Optimal error estimates of a linearized backward Euler Galerkin FEM for the Landau-Lifshitz equation. SIAM J. Numer. Anal. 52, 2574–2593 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garvie, M., Trenchea, C.: A three level finite element approximation of a pattern formation model in developmental biology. Numer. Math. 127, 397–422 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gear, C.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  17. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  18. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Holst, M., Larson, M., Malqvist, A., Axel, R.: Convergence analysis of finite element approximations of the Joule heating problem in three spatial dimensions. BIT 50, 781–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hou, Y., Li, B., Sun, W.: Error analysis of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lambert, J.: Numerical Methods in Ordinary Differential Systems: the Initial Value Problems. Wiley, Chichester (1991)

    Google Scholar 

  22. Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, J.: Simple and efficient ALE methods with provable temporal accuracy up to fifth order for the Stokes equations on time varying domains. SIAM J. Numer. Anal. 51, 743–772 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Logg, A., Mardal, K., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    MATH  Google Scholar 

  27. Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa 3(20), 733–737 (1966)

    MathSciNet  Google Scholar 

  28. Simader, C.G.: On Dirichlet’s Boundary Value Problem: LP-Theory Based on a Generalizayion of garding’s Inequality. Lecture Notes in Mathematics, vol. 268. Springer, Berlin (1972)

  29. Sun, W., Sun, Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  31. Yue, X.: Numerical analysis of nonstationary thermistor problem. J. Comput. Math. 12, 213–223 (1994)

    MathSciNet  MATH  Google Scholar 

  32. Yuan, G.: Regularity of solutions of the thermistor problem. Appl. Anal. 53, 149–155 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yuan, G., Liu, Z.: Existence and uniqueness of the \(C^\alpha \) solution for the thermistor problem with mixed boundary value. SIAM J. Math. Anal. 25, 1157–1166 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao, W.: Convergence analysis of finite element method for the nonstationary thermistor problem. Shandong Daxue Xuebao 29, 361–367 (1994)

    MATH  Google Scholar 

  35. Zhou, S., Westbrook, D.: Numerical solutions of the thermistor equations. J. Comput. Appl. Math. 79, 101–118 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zlámal, M.: Curved elements in the finite element method I. SIAM J. Numer. Anal. 10, 229–240 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Weiwei Sun for valuable suggestions and many constructive discussions. The author is grateful to two anonymous referees for their valuable comments on earlier versions of this paper; especially for one referee bringing our attention to the regularity assumption of the exact solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Gao.

Additional information

H. Gao: The work of the author was supported in part by Fundamental Research Funds for the Central Universities, HUST, China, under Grant No. 2014QNRC025, No. 2015QN132 and a Grant from the Research Grants Council of the Hong Kong Special Administrative Region, China, Project No. CityU 11302514.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H. Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations. J Sci Comput 66, 504–527 (2016). https://doi.org/10.1007/s10915-015-0032-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0032-5

Keywords

Mathematics Subject Classification

Navigation