Skip to main content
Log in

Local and Parallel Finite Element Algorithm Based on the Partition of Unity for Incompressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

By combining two-grid method with domain decomposition method, a new local and parallel finite element algorithm based on the partition of unity is proposed for the incompressible flows. The interesting points in this algorithm lie in (1) a class of partition of unity is derived by a given triangulation, which guides the domain decomposition (2) the globally fine grid correction step is decomposed into a series of local linearized residual problems on some subdomains and (3) the global continuous finite element solution is obtained by assembling all local solutions together using the partition of unity functions. Some numerical simulations are presented to demonstrate the high efficiency and flexibility of the new algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ammi, A.A.O., Marion, M.: Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier–Stokes equations. Numer. Math. 68, 189–213 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32, 1170–1784 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Layton, W., Lee, H.K., Peterson, J.: Numerical solution of the stationary Navier–Stokes equations using a multilevel finite lement method. SIAM J. Sci. Comput. 20, 1–12 (1998)

    Article  MathSciNet  Google Scholar 

  4. Li, K., Hou, Y.: An AIM and one-step Newton method for the Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 190, 6141–6155 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hou, Y., Li, K.: Post-processing Fourier Galerkin method for the Navier–Stokes equations. SIAM J. Numer. Anal. 47, 1909–1922 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. He, Y., Xu, J., Zhou, A.: Local and parallel finite element algorithms for the Navier–Stokes problem. J. Comput. Math. 24, 227–238 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bank, R., Holst, M.: A new paradigm for parallel adaptive meshing algorithms. SIAM J. Sci. Comput. 22, 1411–1443 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bank, R., Holst, M.: A new paradigm for parallel adaptive meshing algorithms. SIAM Rev. 45, 291–323 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. He, Y., Xu, J., Zhou, A.: Local and parallel finite element algorithms for the Stokes problem. Num. Math. 109, 415–434 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. He, Y., Mei, L., Shang, Y., Cui, J.: Newton iterative parallel finite element algorithm for the steady Navier–Stokes equations. J. Sci. Comput. 44, 92–106 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shang, Y., He, Y.: A parallel Oseen-linearized algorithm for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 209, 172–183 (2012)

    Article  MathSciNet  Google Scholar 

  13. Shang, Y., He, Y., Kim, D., Zhou, X.: A new parallel finite element algorithm for the stationary Navier–Stokes equations. Finite Elem. Anal. Des. 47, 1262–1279 (2011)

    Article  MathSciNet  Google Scholar 

  14. Melenk, J., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)

    Article  MATH  Google Scholar 

  15. Babuška, I., Melenk, J.: The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)

    Article  MATH  Google Scholar 

  16. Huang, Y., Xu, J.: A conforming finite element method for overlapping and nonmatching grids. Math. Comput. 72, 1057–1066 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15, 139–191 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Holst, M.: Applications of domain decomposition and partition of unity methods in physics and geometry (plenary paper). In: Herrera, I., Keyes, D.E., Widlund, O.B., Yates, R. (eds.) Proceedings of the Fourteenth International Conference on Domain Decomposition Methods, pp. 63–78. Cocoyoc, Mexico City (2002)

  19. Bacuta, C., Sun, J., Zheng, C.: Partition of unity refinement for local approximation. Num. Methods Part. Differ. Equ. 27, 803–817 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Song, L., Hou, Y., Zheng, H.: Adaptive local postprocessing finite element method for the Navier–Stokes equations. J. Sci. Comput. 55, 255–267 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zheng, H., Song, L., Hou, Y., Zhang, Y.: The partition of unity parallel finite element algorithm. Adv. Comp. Math. doi:10.1007/s10444-014-9392-x

  22. Yu, J., Shi, F., Zheng, H.: Local and parallel finite element algorithm based on the partition of unity for the Stokes problem. SIAM J. Sci. Comput. 36, C547–C567 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  24. Ciarlet, P.G., Lions, J.L.: Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I). Elsevier Science Publishers, North-Holand (1991)

  25. Girault, V., Raviart, P.: Finite Element Methods for the Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5. Springer-Verlag, Berlin, Heidelberg (1986)

  26. Gunzburger, M.: Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice and Algorithms. Academic Press, Boston (1989)

    MATH  Google Scholar 

  27. Boffi, D.: Stability of higher order triangular Hood C Taylor methods for stationary Stokes equations. Math. Model Methods Appl. Sci. 2, 223–235 (1994)

    Article  MathSciNet  Google Scholar 

  28. Boffi, D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34, 664–670 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hecht, F., Pironneau, O., Ohtsuka, K.: FreeFEM++. http://www.freefem.org/ (2013).

  30. Ghia, U., Ghia, K.N., Shin, C.T.: High-resolutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  31. Layton, W., Lee, H., Peterson, J.: A defect-correction method for the incompressible Navier–Stokes equations. Appl. Math. Comput. 129, 1–19 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. John, V., Kaya, S.: A finite element variational multiscale method for the Navier–Stokes equations. SIAM J. Sci. Comput. 26, 1485–1503 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zheng, H., Hou, Y., Shi, F., Song, L.: A finite element variational multiscale method for incompressible flows based on two local Gauss integrations. J. Comput. Phys. 228, 5961–5977 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibiao Zheng.

Additional information

H. Zheng was partially supported by NSF of China with Grant Nos. 11201369, 11171269, 11271298 and Tianyuan Fund for Mathematics with No. 11326224. J. Yu was partially supported by NSF of China with Grant No. 11471071 and NSF of Shanghai with Grant No. 14ZR1401200 and the Fundamental Research Funds for the Central Universities. F. Shi was partially supported by NSFC (Project 11401563), by Guangdong Natural Science Foundation (Project S201204007760), by Tianyuan Fund for Mathematics of the NSFC (Project 11226314), and China Postdoctoral Science Foundation (Project 2014M560252).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Yu, J. & Shi, F. Local and Parallel Finite Element Algorithm Based on the Partition of Unity for Incompressible Flows. J Sci Comput 65, 512–532 (2015). https://doi.org/10.1007/s10915-014-9979-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9979-x

Keywords

Mathematics Subject Classification

Navigation