Skip to main content
Log in

A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a method based on radial basis function (RBF)-generated finite differences (FD) for numerically solving diffusion and reaction–diffusion equations (PDEs) on closed surfaces embedded in \({\mathbb {R}}^d\). Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scattered nodes representing the surface and normal vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby avoiding coordinate distortions and singularities. We also present an optimization procedure that allows for the stabilization of the discrete differential operators generated by our RBF-FD method by selecting shape parameters for each stencil that correspond to a global target condition number. We show the convergence of our method on two surfaces for different stencil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric surfaces and more general surfaces represented by point clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baumgardner, J.R., Frederickson, P.O.: Icosahedral discretization of the two-sphere. SIAM J. Numer. Anal. 22(6), 1107–1115 (1985). doi:10.1137/0722066

    Article  MATH  MathSciNet  Google Scholar 

  2. Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: Rbf-fd formulas and convergence properties. J. Comput. Phys. 229(22), 8281–8295 (2010)

    Article  MATH  Google Scholar 

  3. Calhoun, D., Helzel, C.: A finite volume method for solving parabolic equations on logically cartesian curved surface meshes. SIAM J. Sci. Comput. 31(6), 4066–4099 (2010). doi:10.1137/08073322X. http://epubs.siam.org/doi/abs/10.1137/08073322X

  4. Cecil, T., Qian, J., Osher, S.: Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions. J. Comput. Phys. 196, 327–347 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chandhini, G., Sanyasiraju, Y.: Local RBF-FD solutions for steady convection–diffusion problems. Int. J. Numer. Methods Eng. 72(3), 352–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cignoni, P., Corsini, M., Ranzuglia, G.: Meshlab: an open-source 3d mesh processing system. ERCIM News (73), 45–46 (2008). http://vcg.isti.cnr.it/Publications/2008/CCR08

  7. Davydov, O., Oanh, D.: Adaptive meshless centres and rbf stencils for poisson equation. J. Comput. Phys. 230(2), 287–304 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43(3), 413–422 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007). doi:10.1093/imanum/drl023. http://imajna.oxfordjournals.org/content/27/2/262.abstract

  10. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6. Scientific Publishers, Singapore (2007)

    Book  Google Scholar 

  11. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34, A737–A762 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Flyer, N., Lehto, E., Blaise, S., Wright, G., St-Cyr, A.: A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere. J. Comput. Phys. 231, 4078–4095 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Flyer, N., Wright, G.B.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys. 226, 1059–1084 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. Roy. Soc. A 465, 1949–1976 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fornberg, B., Driscoll, T.A., Wright, G., Charles, R.: Observations on the behavior of radial basis functions near boundaries. Comput. Math. Appl. 43, 473–490 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230, 2270–2285 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65, 627–637 (2013)

    Article  MathSciNet  Google Scholar 

  19. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30, 60–80 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54, 379–398 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fuselier, E., Wright, G.: Scattered data interpolation on embedded submanifolds with restricted positive definite kernels: Sobolev error estimates. SIAM J. Numer. Anal. 50(3), 1753–1776 (2012). doi:10.1137/110821846. http://epubs.siam.org/doi/abs/10.1137/110821846

  23. Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 1–31 (2013). doi:10.1007/s10915-013-9688-x

  24. George, A., Liu, J.W.: Computer Solution of Large Sparse Positive Definite. Prentice Hall Professional Technical Reference (1981)

  25. Gia, Q.T.L.: Approximation of parabolic pdes on spheres using spherical basis functions. Adv. Comput. Math. 22, 377–397 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06, pp. 61–70. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2006). http://dl.acm.org/citation.cfm?id=1281957.1281965

  27. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49, 103–130 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013). doi:10.1137/120899108

    Article  MATH  MathSciNet  Google Scholar 

  29. Macdonald, C., Ruuth, S.: The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31(6), 4330–4350 (2010). doi:10.1137/080740003. http://epubs.siam.org/doi/abs/10.1137/080740003

  30. Piret, C.: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231(20), 4662–4675 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21, 293–317 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A study of different modeling choices for simulating platelets within the immersed boundary method. Appl. Numer. Math. 63(0), 58–77 (2013). doi:10.1016/j.apnum.2012.09.006. http://www.sciencedirect.com/science/article/pii/S0168927412001663

  33. Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A radial basis function (rbf) finite difference method for the simulation of reactiondiffusion equations on stationary platelets within the augmented forcing method. Int. J. Numer. Methods Fluids (2014). doi:10.1002/fld.3880

  34. Shu, C., Ding, H., Yeo, K.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192(7), 941–954 (2003)

    Article  MATH  Google Scholar 

  35. Stevens, D., Power, H., Lees, M., Morvan, H.: The use of PDE centers in the local RBF Hermitean method for 3D convective–diffusion problems. J. Comput. Phys. 228, 4606–4624 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tolstykh, A., Shirobokov, D.: On using radial basis functions in a finite difference mode with applications to elasticity problems. Comput. Mech. 33(1), 68–79 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Varea, C., Aragon, J., Barrio, R.: Turing patterns on a sphere. Phys. Rev. E 60, 4588–4592 (1999)

    Article  Google Scholar 

  38. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  39. Womersley, R.S., Sloan, I.H.: Interpolation and cubature on the sphere. Website (2007). http://web.maths.unsw.edu.au/~rsw/Sphere/

  40. Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006). doi:10.1016/j.jcp.2005.05.030. http://www.sciencedirect.com/science/article/pii/S0021999105003116

Download references

Acknowledgments

We would like to acknowledge useful discussions concerning this work within the CLOT group at the University of Utah. The first, third and fourth authors acknowledge funding support under NIGMS Grant R01-GM090203. The second author acknowledges funding support under NSF-DMS Grant 1160379 and NSF-DMS Grant 0934581.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Shankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, V., Wright, G.B., Kirby, R.M. et al. A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces. J Sci Comput 63, 745–768 (2015). https://doi.org/10.1007/s10915-014-9914-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9914-1

Keywords

Navigation