Skip to main content
Log in

A Sharp Computational Method for the Simulation of the Solidification of Binary Alloys

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a numerical method for the simulation of binary alloys. We make use of the level-set method to capture the evolution of the solidification front and of an adaptive mesh refinement framework based on non-graded quadtree grids to efficiently capture the multiscale nature of the alloys’ concentration profile. In addition, our approach is based on a sharp treatment of the boundary conditions at the solidification front. We apply this algorithm to the solidification of an Ni–Cu alloy and report results that agree quantitatively with theoretical analyses. We also apply this algorithm to show that solidification mechanism maps predicting growth regimes as a function of tip velocities and thermal gradients can be accurately computed with this method; these include the important transitions from planar to cellular to dendritic regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rogich, D., Matos, G.: The global flows of metals and minerals. In: Technical Report 1355, USGS Open File Report, Reston, VA (2008)

  2. Seth, B.B.: Superalloys: the utility gas turbine perspective. In: Pollock, T.M., Kissinger, R.D., Bowman, R.R., et al. (eds.) Superalloys 2000, pp. 3–16. The Minerals, Metals and Materials Society (TMS), Warrendale, PA (2000)

  3. Schafrik, R., Sprague, R.: Gas turbine materials. Adv. Mater. Process. 5, 29–34 (2004)

    Google Scholar 

  4. Pollock, T., Tin, S.: Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. AIAA J. Propuls. Power 22, 361–374 (2006)

    Article  Google Scholar 

  5. Reed, R.C.: The Superalloys: Fundamentals and Applications. Cambridge University Press, Cambridge (2006)

  6. Elliott, A., Pollock, T., Tin, S., King, W., Huang, S.-C., Gigliotti, M.: Directional solidification of large superalloy castings with radiation and liquid-metal cooling: a comparative assessment. Metall. Mater. Trans. A 35, 3221–3231 (2004)

  7. Brundidge, C., Miller, J., Pollock, T.: Development of dendritic structure in the liquid-metal cooled directional solidification process. Metall. Mater. Trans. 42A, 2723–2732 (2011)

    Article  Google Scholar 

  8. Brundidge, C., Pollock, T.: Processing to fatigue properties: benefits of high gradient casting for single crystal airfoils. In: Superalloys 2012, Proceedings 12th International Conference on Superalloys, TMS (2012)

  9. Madison, J., Spowart, J., Rowenhorst, D., Aagesen, L., Thornton, K., Pollock, T.: Modeling fluid flow in three-dimensional single crystal dendritic structures. Acta Mater. 58, 2864–2875 (2010)

    Article  Google Scholar 

  10. Madison, J., Spowart, J., Rowenhorst, D., Aagesen, L., Thornton, K., Pollock, T.: Fluid flow and defect formation in the 3-dimensional dendritic structure of nickel-base single crystals. Metall. Mater. Trans. 43A, 369 (2012)

    Article  Google Scholar 

  11. Davis, S.: Theory of Solidification. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  12. Zhu, M., Stefanescu, D.: Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys. Acta Mater. 55(5), 1741–1755 (2007)

    Article  Google Scholar 

  13. McFadden, G.B., Coriell, S.R., Sekerka, R.F.: Effect of surface free energy anisotropy on dendrite tip shape. Acta Mater. 48(12), 3177–3181 (2000)

    Article  Google Scholar 

  14. Kurz, W.: Dendritic growth. Int. Mater. Rev. 39(26), 49–74 (1994)

    Google Scholar 

  15. Meiron, D.: Selection of steady-states in the two-dimensional symmetric model of dendritic growth. Phys. Rev. A. 33, 2704 (1986)

    Article  Google Scholar 

  16. Ben Amar, M., Pelcé, P.: Impurity effect on dendritic growth. Phys. Rev. A 39(8), 4263–4269 (1989)

    Article  Google Scholar 

  17. Langer, J.S.: Models of pattern formation in first-order phase transitions. In: Grinstein, G., Mazenko, G. (eds.) Directions in Condensed Matter Physics, p. 165. World Scientific, Singapore (1986)

  18. Karma, A., Rappel, W.-J.: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323–4349 (1997)

    Article  Google Scholar 

  19. Karma, A.: Phase-field formulation for quantitative modeling of alloy solidification. Phys. Rev. Lett. 87, 115701 (2001)

    Article  Google Scholar 

  20. Nestler, B., Danilov, D., Galenko, P.: Crystal growth of pure substances: phase-field simulations in comparison with analytical and experimental results. J. Comput. Phys. 207, 221–239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schmidt, A.: Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 125, 293–312 (1996)

    Article  MATH  Google Scholar 

  22. Karma, A., Rappel, W.J.: Phase-field modeling method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53, R3017–R3020 (1996)

    Article  Google Scholar 

  23. Echebarria, B., Folch, R., Karma, A., Plapp, M.: Quantitative phase-field model of alloy solidification. Phys. Rev. E 70, 061604 (2004)

    Article  Google Scholar 

  24. Pons, A.J., Karma, A., Akamatsu, S., Newey, M., Pomerance, A., Singer, H., Losert, W.: Feedback control of unstable cellular solidification fronts. Phys. Rev. E 75, 021602 (2007)

    Article  Google Scholar 

  25. Asta, M., Beckermann, C., Karma, A., Kurz, W., Napolitano, R., Plapp, M., Purdy, G., Rappaz, M., Trivedi, R.: Solidification microstructures and solid-state parallels: recent developments, future directions. Acta Mater. 57, 941–971 (2009)

    Article  Google Scholar 

  26. Gurevich, S., Karma, A., Plapp, M., Trivedi, R.: Phase-field study of three-dimensional steady-state growth shapes in directional solidification. Phys. Rev. E 81, 011603 (2010)

    Article  Google Scholar 

  27. Kopczynski, P., Rappel, W.-J., Karma, A.: Critical role of crystalline anisotropy in the stability of cellular array structures in directional solidification. Phys. Rev. Lett. 77, 3387–3390 (1996)

    Article  Google Scholar 

  28. Hurle, D.T.: Handbook of Crystal Growth. North Holland (1993)

  29. Elder, K., Grant, M., Provatas, N., Kosterlitz, J.: Sharp interface limits of phase-field models. SIAM J. Appl. Math. 64, 21604 (2001)

    Google Scholar 

  30. Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simulations of solidification. Ann. Rev. Mater. Res. 32, 163–194 (2002)

    Article  Google Scholar 

  31. Chen, L.-Q.: Phase-field models for microstructure evolution. Ann. Rev. Mater. Res. 32, 113–40 (2002)

    Article  Google Scholar 

  32. George, W.L., Warren, J.A.: A parallel 3d dendritic growth simulator using the phase-field method. J. Comput. Phys. 177(2), 264–283 (2002)

    Article  MATH  Google Scholar 

  33. Stinner, B., Nestler, B., Garcke, H.: A diffuse interface model for alloys with multiple components and phases. SIAM J. Appl. Math. 64, 775–799 (2004)

  34. Dorr, M., Fattebert, J.-L., Wickett, M., Belak, J., Turchi, P.: A numerical algorithm for the solution of a phase-field model of polycrystalline materials. J. Comput. Phys. 229(3), 626–641 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Karagadde, S., Bhattacharya, A., Tomar, G., Dutta, P.: A coupled VOF-IBM-enthalpy approach for modeling motion and growth of equiaxed dendrites in a solidifying melt. J. Comput. Phys. 231(10), 3987–4000 (2012)

    Article  MATH  Google Scholar 

  36. Jeong, J.-H., Goldenfeld, N., Dantzig, J.: Phase field model for three-dimensional dendritic growth with fluid flow. Phys. Rev. E 64, 41602 (2001)

    Article  Google Scholar 

  37. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708–759 (2001)

    Article  MATH  Google Scholar 

  38. Heinrich, J., Zhao, P.: Front tracking finite element method for dendritic solidification. J. Comput. Phys. 173, 765–796 (2001)

    Article  MATH  Google Scholar 

  39. Zhao, P., Vénere, M., Heinrich, J., Poirier, D.: Modeling dendritic growth of a binary alloy. J. Comput. Phys. 188(2), 434–461 (2003)

    Article  MATH  Google Scholar 

  40. Singh, R., Shyy, W.: Three-dimensional adaptive cartesian grid method with conservative interface restructuring and reconstruction. J. Comput. Phys. 224(1), 150–167 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Al-Rawahi, N.: Numerical simulation of dendritic solidification with convection: two-dimensional geometry. J. Comput. Phys. 180(2), 471–496 (2002)

    Article  MATH  Google Scholar 

  42. Eck, C., Knabner, P., Korotov, S.: A two-scale method for the computation of solid–liquid phase transitions with dendritic microstructure. J. Comput. Phys. 178(1), 58–80 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  43. Möller, P., Hansbo, P.: On advancing front mesh generation in three dimensions. Int. J. Num. Methods Eng. 38, 3551–3569 (1995)

    Article  MATH  Google Scholar 

  44. Fedoseyev, A.I., Alexander, J.D.: An inverse finite element method for pure and binary solidification problems. J. Comput. Phys. 130(2), 243–255 (1997)

    Article  MATH  Google Scholar 

  45. Skeldon, A., Cliffe, K., Riley, D.: Grid design for the computation of a hexagon-roll interaction using a finite element method. J. Comput. Phys. 133(1), 18–26 (1997)

    Article  MATH  Google Scholar 

  46. Bars, M.L., Worster, M.G.: Solidification of a binary alloy: Finite-element, single-domain simulation and new benchmark solutions. J. Comput. Phys. 216(1), 247–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zabaras, N., Ganapathysubramanian, B., Tan, L.: Modelling dendritic solidification with melt convection using the extended finite element method. J. Comput. Phys. 218(1), 200–227 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  48. Tan, L., Zabaras, N.: A level set simulation of dendritic solidification of multi-component alloys. J. Comput. Phys. 221(1), 9–40 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Tan, L., Zabaras, N.: Modeling the growth and interaction of multiple dendrites in solidification using a level set method. J. Comput. Phys. 226(1), 131–155 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  50. Tan, L., Zabaras, N.: Multiscale modeling of alloy solidification using a database approach. J. Comput. Phys. 227(1), 728–754 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  51. Min, C., Gibou, F.: A second order accurate level set method on non-graded adaptive Cartesian grids. J. Comput. Phys. 225(1), 300–321 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Chen, H., Min, C., Gibou, F.: A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate. J. Comput. Phys. 228(16), 5803–5818 (2009)

    Article  MATH  Google Scholar 

  53. Chen, H., Min, C., Gibou, F.: A second-order accurate FDM for the heat equation on irregular domains and adaptive grids. In: Proceedings of the Materials Research Society Symposium, San Francisco, CA, USA, vol. 910, pp. 907–910 (2006)

  54. Benson, D.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  55. Benson, D.: Volume of fluid interface reconstruction methods for multimaterial problems. Appl. Mech. Rev. 52, 151–165 (2002)

    Article  Google Scholar 

  56. DeBar, R.: Fundamentals of the KRAKEN code. Technical Report, Lawrence Livermore National Laboratory (UCID-17366) (1974)

  57. Noh, W., Woodward, P.: SLIC (simple line interface calculation). In: 5th International Conference on Numerical Methods in Fluid Dynamics, 1976, pp. 330–340 (1976)

  58. Youngs, D.: An interface tracking method for a 3D Eulerian hydrodynamics code. Technical Report, AWRE (44/92/35) (1984)

  59. Dyadechko, V., Shashkov, M.: Moment-of-fluid interface reconstruction. Technical Report, Los Alamos National Laboratory (LA-UR-05-7571) (2006)

  60. Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  61. Glimm, J., Grove, J.W., Li, X.L., Zhao, N.: Simple front tracking. Contemp. Math. 238, 133–149 (1999)

    Article  MathSciNet  Google Scholar 

  62. Juric, D.: A front-tracking method for dendritic solidification. J. Comput. Phys. 123(1), 127–148 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  63. Juric, D., Tryggvason, G.: Computations of boiling flows. Int. J. Multiph. Flow 24, 387–410 (1998)

    Article  MATH  Google Scholar 

  64. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  65. Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169, 463–502 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  66. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

  67. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210, 225–246 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  68. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  69. Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  70. Chen, S., Merriman, B., Osher, S., Smereka, P.: A simple level set method for solving Stefan problems. J. Comput. Phys. 135, 8–29 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  71. Kim, Y.-T., Goldenfeld, N., Dantzig, J.: Computation of dendritic microstructures using a level set method. Phys. Rev. E 62, 2471–2474 (2000)

    Article  Google Scholar 

  72. Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19, 183–199 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  73. Yang, Y., Udaykumar, H.: Sharp interface cartesian grid method iii: Solidification of pure materials and binary solutions. J. Comput. Phys. 210(1), 55–74 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  74. Gibou, F., Fedkiw, R., Cheng, L.-T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176, 205–227 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  75. Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. 202, 577–601 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  76. Chen, H., Min, C., Gibou, F.: A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids. J. Sci. Comput. 31(1–2), 19–60 (2007)

    Article  MathSciNet  Google Scholar 

  77. Chang, A., Dantzig, J.A., Darr, B.T., Hubel, A.: Modeling the interaction of biological cells with a solidifying interface. J. Comput. Phys. 226(2), 1808–1829 (2007). doi:10.1016/j.jcp.2007.05.039

    Article  MATH  Google Scholar 

  78. Aftosmis, M.J., Berger, M.J., Melton, J.E.: Adaptive Cartesian mesh generation. In: CRC Handbook of Mesh Generation (Contributed Chapter) (1998)

  79. Brun, E., Guittet, A., Gibou, F.: A local level-set method using a hash table data structure. J. Comput. Phys. 231, 2528–2536 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  80. Gibou, F., Min, C.: On the performance of a simple parallel implementation of the ILU-PCG for the poisson equation on irregular domains. J. Comput. Phys. 231(14), 4531–4536 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  81. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: ACM Transactions Graph (SIGGRAPH Proceedings) pp. 457–462 (2004)

  82. Min, C., Gibou, F., Ceniceros, H.: A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids. J. Comput. Phys. 218(1), 123–140 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  83. Min, C., Gibou, F.: A second order accurate projection method for the incompressible navier-stokes equations on non-graded adaptive grids. J. Comput. Phys. 219(2), 912–929 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  84. Min, C., Gibou, F.: Geometric integration over irregular domains with application to level-set methods. J. Comput. Phys. 226(2), 1432–1443 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  85. Min, C., Gibou, F.: Robust second-order accurate discretizations of the multi-dimensional Heaviside and Dirac delta functions. J. Comput. Phys. 227(22), 9686–9695 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  86. Mirzadeh, M., Theillard, M., Gibou, F.: A second-order discretization of the Nonlinear Poisson–Boltzmann equation over irregular geometries using non-graded adaptive Cartesian grids. J. Comput. Phys. 230(5), 2125–2140 (2010)

    Article  MathSciNet  Google Scholar 

  87. Papac, J., Gibou, F., Ratsch, C.: Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions. J. Comput. Phys. 229(3), 875–889 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  88. Helgadóttir, A., Gibou, F.: A Poisson–Boltzmann solver on irregular domains with Neumann or Robin boundary conditions on non-graded adaptive grid. J. Comput. Phys. 230(10), 3830–3848 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  89. Miniati, F., Colella, P.: Block structured adaptive mesh and time refinement for hybrid, hyperbolic, n-body systems. J. Comput. Phys. 227(1), 400–430 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  90. Estep, D., Tavener, S., Wildey, T.: A posteriori error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid-solid heat transfer. J. Comput. Phys. 229(11), 4143–4158 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  91. Ceniceros, H.D., Nós, R.L., Roma, A.M.: Three-dimensional, fully adaptive simulations of phase-field fluid models. J. Comput. Phys. 229(17), 6135–6155 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  92. Provatas, N., Goldenfeld, N., Dantzig, J.: Efficient computation of dendritic microstructures using adaptive mesh refinement. Phys. Rev. Lett. 80, 3308 (1998)

    Article  Google Scholar 

  93. Provatas, N., Goldenfeld, N., Dantzig, J.: Adaptive mesh refinement computation of solidification microstructure using dynamic data structures. J. Comput. Phys 148, 265 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  94. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  95. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 126, 202–212 (1996)

    Article  MathSciNet  Google Scholar 

  96. Strain, J.: Tree methods for moving interfaces. J. Comput. Phys. 151, 616–648 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  97. Min, C.: Local level set method in high dimension and codimension. J. Comput. Phys. 200, 368–382 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  98. Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  99. Liu, X.D., Fedkiw, R., Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 154, 151 (2000)

    Article  MathSciNet  Google Scholar 

  100. Mirzadeh, M., Theillard, M., Helgadottir, A., Boy, D., Gibou, F.: An adaptive, finite difference solver for the nonlinear poisson-boltzmann equation with applications to biomolecular computations. Commun. Comput. Phys. 13, 150–173 (2013)

    Google Scholar 

  101. Aslam, T.: A partial differential equation approach to multidimensional extrapolation. J. Comput. Phys. 193, 349–355 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  102. Adalsteinsson, D., Sethian, J.: A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269–277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  103. Theillard, M., Rycroft, C.H., Gibou, F.: A multigrid method on non-graded adaptive octree and quadtree Cartesian grids. J. Sci. Comput. 55, 1–15 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  104. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)

    Article  MATH  Google Scholar 

  105. Mullins, W.W., Sekerka, R.F.: Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 5, 323–329 (1964)

  106. Kurz, W., Fisher, D.J.: Fundamentals of Solidification. Trans Tech Publication, Aedermannsdorf, Switzerland (1998)

Download references

Acknowledgments

We would like to thank Dr. Jonathan Miller for stimulating discussions at UCSB and AFRL about solidification of binary alloys. We also thank Christopher Harrel for running some simulations while interning in the Computational Applied Science Laboratory as part of the CNSI INSET program at UCSB. The research of M. Theillard and F. Gibou was supported in part by ONR N00014-11-1-0027, NSF CHE 1027817 and by the W.M. Keck Foundation. In addition M. Theillard acknowledges support from a Dean’s fellowship at UCSB. T. Pollock was supported in part by NSF DMREF Grant DMR 1233704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Theillard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theillard, M., Gibou, F. & Pollock, T. A Sharp Computational Method for the Simulation of the Solidification of Binary Alloys. J Sci Comput 63, 330–354 (2015). https://doi.org/10.1007/s10915-014-9895-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9895-0

Keywords

Navigation