Skip to main content
Log in

A Symmetric and Consistent Immersed Finite Element Method for Interface Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The non-conforming immersed finite element method (IFEM) developed in Li et al. (Numer Math 96:61–98, 2003) for interface problems is extensively studied in this paper. The non-conforming IFEM is very much like the standard finite element method but with modified basis functions that enforce the natural jump conditions on interface elements. While the non-conforming IFEM is simple and has reasonable accuracy, it is not fully second order accurate due to the discontinuities of the modified basis functions. While the conforming IFEM also developed in Li et al. (Numer Math 96:61–98, 2003) is fully second order accurate, the implementation is more complicated. A new symmetric and consistent IFEM has been developed in this paper. The new method maintains the advantages of the non-conforming IFEM by using the same basis functions but it is symmetric, consistent, and more important, it is second order accurate. The idea is to add some correction terms to the weak form to take into account of the discontinuities in the basis functions. Optimal error estimates are derived for the new symmetric and consistent IFE method in the \(L^2\) and \(H^1\) norms. Numerical examples presented in this paper confirm the theoretical analysis and show that the new developed IFE method has \(O(h^2)\) convergence in the \(L^\infty \) norm as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)

    Book  Google Scholar 

  2. Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5, 207–213 (1970)

    Article  MATH  Google Scholar 

  3. Bramble, J., King, J.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Camp, B., Lin, T., Lin, Y., Sun, W.: Quadratic immersed finite element spaces and their approximation capabilities. Adv. Comput. Math. 24, 81–112 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, K., Zhang, K., Liao, X., Zou, J., Schubert, G.: A three-dimensional spherical nonlinear interface dynamo. Astrophys. J. 596, 663–679 (2003)

    Article  Google Scholar 

  7. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chou, S., Kwak, D., Wee, K.: Optimal convergence analysis of an immersed interface finite element method. Adv. Comput. Math. 33, 149–168 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  10. Fries, T., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84, 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Gong, Y., Li, B., Li, Z.: Immersed-interface finite-element methods for elliptic interface problems with non-homogeneous jump conditions. SIAM J. Numer. Anal. 46, 472–495 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, H.: The numerical solutions of the interface problems by infinite element methods. Numer. Math. 39, 39–50 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 5537–5552 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, X., Lin, T., Lin, Y.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differ. Equ. 24, 1265–1300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, X., Lin, T., Lin, Y.: Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model. 8, 284–301 (2011)

    MathSciNet  MATH  Google Scholar 

  16. He, X., Lin, T., Lin, Y.: The convergence of the bilinear and linear immersed finite element solutions to interface problems. Numer. Methods Partial Differ. Equ. 28, 312–330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hou, S., Li, Z., Wang, L., Wang, W.: A numerical method for solving elasticity equations with interfaces. Commun. Comput. Phys. 12, 595–612 (2012)

    MathSciNet  Google Scholar 

  18. Hou, S., Liu, X.: A numerical method for solving variable coefficient elliptic equation with interfaces. J. Comput. Phys. 202, 411–445 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hou, T., Wu, X., Zhang, Y.: Removing the cell resonance error in the multiscale finite element method via a Petrov–Galerkin formulation. Commun. Math. Sci. 2, 185–205 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, J., Zou, J.: Some new a priori estimates for second-order elliptic and parabolic interface problems. J. Differ. Equ. 184, 570–586 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ji, H., Chen, J., Li, Z.: Augmented immersed finite element methods for elliptic PDEs with interfaces and irregular domains. Int. J. Comput. Math. (submitted)

  22. Kafafy, R., Lin, T., Lin, Y., Wang, J.: Three-dimensional immersed finite element methods for electric field simulation in composite materials. Int. J. Numer. Methods Eng. 64, 940–972 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kwak, D., Wee, K., Chang, K.: An analysis of a broken \(P_1\)-nonconforming finite element method for interface problems. SIAM J. Numer. Anal. 48, 2117–2134 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. LeVeque, R., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35, 230–254 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Z.: The immersed interface method using a finite element formulation. Appl. Numer. Math. 27, 253–267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Z., Ito, K.: Maximum principle preserving schemes for interface problems with discontinuous coefficients. SIAM J. Sci. Comput. 23, 1225–1242 (2001)

    MathSciNet  Google Scholar 

  28. Li, Z., Ito, K.: The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains. Frontiers in Applied Mathematics, vol. 33. SIAM, Philadelphia (2006)

  29. Li, Z., Lin, T., Lin, Y., Rogers, R.: An immersed finite element space and its approximation capability. Numer. Methods Partial Differ. Equ. 20, 338–367 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96, 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, T., Lin, Y., Rogers, R., Ryan, M.: A rectangular immersed finite element space for interface problems. Adv. Comput. Theory Pract. 7, 107–114 (2001)

    MathSciNet  Google Scholar 

  32. Lin, T., Lin, Y., Sun, W.: Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discret. Contin. Dyn. Syst. Ser. B 7, 807–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lin, T., Zhang, X.: Linear and bilinear immersed finite elements for planar elasticity interface problems. J. Comput. Appl. Math. 236, 4681–4699 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Massjung, R.: An unfitted discontinuous Galerkin method applied to elliptic interface problems. SIAM J. Numer. Anal. 50, 3134–3162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mu, L., Wang, J., Wei, G., Ye, X., Zhao, S.: Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250, 106–125 (2013)

    Article  MathSciNet  Google Scholar 

  36. Wang, X., Liu, W.K.: Extended immersed boundary method using FEM and RKPM. Comput. Methods Appl. Mech. Eng. 193, 1305–1321 (2004)

    Article  MATH  Google Scholar 

  37. Wu, H., Xiao, Y.: An Unfitted \(hp\)-Interface Penalty Finite Element Method for Elliptic Interface Problems. arXiv:1007.2893 (2010)

  38. Xie, H., Ito, K., Li, Z., Toivanen, J.: A finite element method for interface problems with locally modified triangulation. Contemp. Math. 466, 179–190 (2008)

    Article  MathSciNet  Google Scholar 

  39. Xu, J.: Error estimates of the finite element method for the 2nd order elliptic equations with discontinuous coefficients. J. Xiangtan Univ. 1, 1–5 (1982)

    Google Scholar 

  40. Yang, X., Li, B., Li, Z.: The immersed interface method for elasticity problems with interface. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 10, 783–808 (2003)

    MATH  Google Scholar 

  41. Zhang, L., Gerstenberger, A., Wang, X., Liu, W.K.: Immersed finite element method. Comput. Methods Appl. Mech. Eng. 193, 2051–2067 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referee for constructive comments. The first and second authors were supported by the National Science Foundation (NSF) of China (Grants Nos. 11371199 and 11301275), the Program of Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 12KJB110013), and the Doctoral fund of Ministry of Education of China (Grant No. 20123207120001), and the Innovation Project for Graduate Education of Jiangsu Province (CXLX13_365). The third author was partially supported by the US ARO grants 550694-MA, the AFSOR grant FA9550-09-1-0520, the US NSF grant DMS-0911434, and the NIH grant 096195-01, and CNSF grants 11071123 and 11161036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinru Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, H., Chen, J. & Li, Z. A Symmetric and Consistent Immersed Finite Element Method for Interface Problems. J Sci Comput 61, 533–557 (2014). https://doi.org/10.1007/s10915-014-9837-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9837-x

Keywords

Navigation