Skip to main content
Log in

Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a simple modification of standard weighted essentially non-oscillatory (WENO) finite volume methods for Cartesian grids, which retains the full spatial order of accuracy of the one-dimensional discretization when applied to nonlinear multidimensional systems of conservation laws. We derive formulas, which allow us to compute high-order accurate point values of the conserved quantities at grid cell interfaces. Using those point values, we can compute a high-order flux at the center of a grid cell interface. Finally, we use those point values to compute high-order accurate averaged fluxes at cell interfaces as needed by a finite volume method. The method is described in detail for the two-dimensional Euler equations of gas dynamics. An extension to the three-dimensional case as well as to other nonlinear systems of conservation laws in divergence form is straightforward. Furthermore, similar ideas can be used to improve the accuracy of WENO type methods for hyperbolic systems which are not in divergence form. Several test computations confirm the high-order accuracy for smooth nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Casper, J., Atkins, H.L.: A finite-volume high-order ENO scheme for two-dimensional hyperbolic systems. J. Comput. Phys. 106, 62–76 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Christlieb, A.J., Rossmanith, J.A., Tang, Q.: Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics. J. Comput. Phys. (2013). arXiv:1309.3344 [math.NA] (to appear)

  4. Don, W.-S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)

    Article  MathSciNet  Google Scholar 

  5. Fehlberg, E.: Klassische Runge–Kutta–Formeln fünfter und siebenter Ordnung mit Schrittweiten-Kontrolle. Computing 4, 93–106 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Helzel, C., Rossmanith, J.A., Taetz, B.: A high order unstaggered constrained transport method for the ideal magnetohydrodynamic equations based on the method of lines. SIAM J. Sci. Comput. 35, A623–A651 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Helzel, C., Rossmanith, J.A., Taetz, B.: An unstaggered constrained transport method for the 3d ideal magnetohydrodynamic equations. J. Comput. Phys. 230, 3803–3829 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  9. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ketcheson, D.I., Parsani, M., LeVeque, R.J.: High-order wave propagation algorithms for hyperbolic systems. SIAM J. Sci. Comput. 35, A351–A377 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, MA (2002)

    Book  MATH  Google Scholar 

  12. McCorquodale, P., Colella, P.: A high-order finite volume method for conservation laws on logically refined grids. Commun. App. Math. and Comp. Sci. 6, 1–25 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Merriman, B.: Understanding the Shu–Osher conservative finite difference form. J. Sci. Comput. 19, 309–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rabiei, F., Ismail, F.: Fifth-order improved Runge–Kutta methods with reduced number of function evaluations. Aust. J. Basic Appl. Sci. 6, 97–105 (2012)

    Google Scholar 

  15. Rossmanith, J.A.: An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows. SIAM J. Sci. Comput. 28, 1766–1797 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schultz-Rinne, C.W.: Classification of the Riemann problem for two dimensional gas dynamics. SIAM J. Math. Anal. 24, 76–88 (1993)

    Article  MathSciNet  Google Scholar 

  17. Shen, C., Qiu, J.M., Christlieb, A.: Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations. J. Comput. Phys. 230, 3780–3802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shi, J., Hu, C., Shu, C.-W.: A technique for treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002)

    Article  MATH  Google Scholar 

  22. Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201, 238–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsoutsanis, P., Titarev, V.A., Drikakis, D.: Weno schemes on arbitrary mixed-element unstructured meshes in three space dimension. J. Comput. Phys. 230, 1585–1601 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, R., Zhang, M., Shu, C.-W.: On the order of accuracy and numerical performance of two classes of finite volume WENO schemes. Commun. Comput. Phys. 9, 807–827 (2011)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Helzel.

Additional information

This work was supported by the DFG through FOR1048.

Appendices

Appendix 1: Explicit Runge–Kutta methods

For the temporal discretization we use explicit Runge–Kutta methods of order 5 and 7, respectively. After discretizing the PDE in space, we obtain a system of ordinary differential equations of the general form

$$\begin{aligned} \frac{d}{dt} Q(t) = {\mathcal L}(Q(t)), \end{aligned}$$
(51)

where \(Q(t)\) is a grid function of cell average values of the conserved quantities at time \(t\). We discretize the resulting ode system using Runge–Kutta methods of order five and seven. The methods are described by the Butcher tableaus in Tables 1011.

Table 10 Butcher tableau of the fifth order accurate Runge–Kutta method from [14]
Table 11 Butcher tableau of a seventh order accurate Runge–Kutta method from [5]

In Fig. 6 we show the stability regions of the two different Runge–Kutta methods used in this paper.

Fig. 6
figure 6

Regions of absolute stability for RK5 and RK7

Appendix 2: Spatial Reconstruction of Interface Values

In this appendix we give the formulas for the spatial reconstruction of interface averaged values of the conserved quantity used in our implementation of the WENO method. We present the formulas for the reconstruction in the \(x\)-direction. This is based on a description of WENO methods in [1, 4, 18].

1.1 5th Order Accurate WENO Reconstruction

At grid cell interfaces we compute averaged values of the conserved quantities

$$\begin{aligned} Q_{i\pm \frac{1}{2},j}^{\mp }&= w_1^{\mp } Q_{i\pm \frac{1}{2},j}^{(1\mp )} + w_2^{\mp } Q_{i\pm \frac{1}{2},j}^{(2\mp )} + w_3^{\mp } Q_{i\pm \frac{1}{2},j}^{(3\mp )}, \end{aligned}$$
(52)

with

$$\begin{aligned} Q_{i+\frac{1}{2},j}^{(1-)}&= \frac{1}{3} Q_{i-2,j} - \frac{7}{6} Q_{i-1,j} + \frac{11}{6} Q_{i,j}, \quad Q_{i-\frac{1}{2},j}^{(1+)} = -\frac{1}{6} Q_{i-2,j} + \frac{5}{6} Q_{i-1,j} + \frac{1}{3} Q_{i,j}\nonumber \\ Q_{i+\frac{1}{2},j}^{(2-)}&= -\frac{1}{6} Q_{i-1,j} + \frac{5}{6} Q_{i,j} + \frac{1}{3} Q_{i+1,j}, \quad Q_{i-\frac{1}{2},j}^{(2+)} = \frac{1}{3} Q_{i-1,j} + \frac{5}{6} Q_{i,j} - \frac{1}{6} Q_{i+1,j} \nonumber \\ Q_{i+\frac{1}{2},j}^{(3-)}&= \frac{1}{3} Q_{i,j} + \frac{5}{6} Q_{i+1,j} - \frac{1}{6} Q_{i+2,j}, \quad Q_{i-\frac{1}{2},j}^{(3+)} = \frac{11}{6} Q_{i,j} - \frac{7}{6} Q_{i+1,j} + \frac{1}{3} Q_{i+2,j}.\nonumber \\ \end{aligned}$$
(53)

The coefficients \(w_1^\pm ,\ldots , w_3^\pm \) in (52) depend on the local solution structure. In the WENO-Z method suggested by Don and Borges [4], they have the form

$$\begin{aligned} w_j^\pm = \frac{\tilde{w}_j^\pm }{\sum _{i=1}^3 \tilde{w}_i^\pm }, \quad \text{ with } \tilde{w}_j^\pm = \gamma _j^\pm \left( 1 + \left( \frac{\tau _5}{\beta _j + \epsilon } \right) ^p \right) , \end{aligned}$$
(54)

with \(p=2\) and \(j=1,\ldots ,3\). \(\gamma _1^- = \gamma _3^+ = \frac{1}{10},\,\gamma _2^- = \gamma _2^+ = \frac{3}{5},\,\gamma _3^- = \gamma _1^+ = \frac{3}{10},\,\beta _j\) as described in [18, Equation (2.9)], \(\tau _5 = |\beta _1-\beta _3|\) and \(\epsilon =\varDelta x^4\). The WENO-Z methods are constructed to recover the optimal spatial order of convergence. For other high order WENO methods this may depend stronger on the choice of parameters such as \(\epsilon \), see for example [8].

The WENO-JS method is obtained by replacing the computation of \(\tilde{w}_j^\pm \) by the formula

$$\begin{aligned} \tilde{w}_j^\pm = \frac{\gamma _j^\pm }{(\epsilon + \beta _j)^2}, \quad j=1,2,3. \end{aligned}$$
(55)

Here the same values are used for \(\gamma _j^\pm \) and \(\beta _j\), but the parameter \(\epsilon \) is replaced by \(\epsilon =10^{-6}\).

1.2 7th Order Accurate WENO Reconstruction

Our seventh order spatial reconstruction uses values \(Q^{(1 \mp )}, \ldots , Q^{(4\mp )}\) from [1] and computes \(Q_{i\pm \frac{1}{2},j}^\mp \) analogously to (52), with weights of the same form

$$\begin{aligned} w_j^\pm = \frac{\tilde{w}_j^\pm }{\sum _{i=1}^4 \tilde{w}_i^\pm }, \quad \text{ with } \tilde{w}_j^\pm = \gamma _j^\pm \left( 1 + \left( \frac{\tau _7}{\beta _j + \epsilon } \right) ^p \right) , \end{aligned}$$
(56)

The \(\beta \)-terms are set to be equal to \(IS_0^4, \ldots , IS_3^4\) as defined in [1, page 415]. For the 7th order WENO-Z method we set \(\tau _7 = |\beta _1 + 3 \beta _2 - 3 \beta _3-\beta _4|,\,p=2\) and \(\epsilon = \varDelta x^5\), see [4]. For the 7th order WENO-JS method we use

$$\begin{aligned} \tilde{w}_j^\pm = \frac{\gamma _j^\pm }{(\epsilon + \beta _j)^2}, \quad j=1,\ldots ,4. \end{aligned}$$
(57)

with \(\epsilon = 10^{-10}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchmüller, P., Helzel, C. Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids. J Sci Comput 61, 343–368 (2014). https://doi.org/10.1007/s10915-014-9825-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9825-1

Keywords

Mathematics Subject Classification

Navigation