Skip to main content
Log in

Efficient Rearrangement Algorithms for Shape Optimization on Elliptic Eigenvalue Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, several efficient rearrangement algorithms are proposed to find the optimal shape and topology for elliptic eigenvalue problems with inhomogeneous structures. The goal is to solve minimization and maximization of the k-th eigenvalue and maximization of spectrum ratios of the second order elliptic differential operator. Physically, these problems are motivated by the frequency control based on density distribution of vibrating membranes. The methods proposed are based on Rayleigh quotient formulation of eigenvalues and rearrangement algorithms which can handle topology changes automatically. Due to the efficient rearrangement strategy, the new proposed methods are more efficient than classical level set approaches based on shape and/or topological derivatives. Numerous numerical examples are provided to demonstrate the robustness and efficiency of new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 1
Algorithm 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Allaire, G.: Shape Optimization by the Homogenization Method. Springer, New York (2001)

    Google Scholar 

  2. Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216, 573–588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bajalinov, E.B.: Linear-Fractional Programming: Theory, Methods, Applications and Software. Kluwer Academic, Boston (2003)

    MATH  Google Scholar 

  4. Bendsoe, M., Sigmund, O.: Topology Optimization. Theory. Methods and Applications. Springer, New York (2003)

    Google Scholar 

  5. Burger, M.: A framework for the construction of level set methods for shape optimization and reconstruction. Inverse Probl. 17, 1327–1356 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burger, M., Hackl, B., Ring, W.: Incorporating topological derivatives into level set methods. J. Comput. Phys. 194, 344–362 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cox, S.: The two phase drum with the deepest bass note. Jpn. J. Ind. Appl. Math. 8, 345–355 (1991)

    Article  MATH  Google Scholar 

  8. Cox, S., McLaughlin, J.: Extremal eigenvalue problems for composite membranes I and II. Appl. Math. Optim. 22, 153–167 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cox, S.J.: The generalized gradient at a multiple eigenvalue. J. Funct. Anal. 133, 30–40 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haber, E.: A multilevel, level-set method for optimizing eigenvalues in shape design problems. J. Comput. Phys. 198, 518–534 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, L., Kao, C.-Y., Osher, S.: Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 225, 891–909 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  13. Ito, K., Kunischm, K., Li, Z.: Level-set function approach to an inverse interface problem. Inverse Probl. 17, 1225–1242 (2001)

    Article  MATH  Google Scholar 

  14. Kao, C.-Y., Lou, Y., Yanagida, E.: Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Math. Biosci. Eng. 5, 315–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kao, C.Y., Osher, S., Yablonovitch, E.: Maximizing band gaps in two dimensional photonic crystals by using level set methods. Appl. Phys. B, Lasers Opt. 81, 235–244 (2005)

    Article  Google Scholar 

  16. Kao, C.-Y., Santosa, F.: Maximization of the quality factor of an optical resonator. Wave Motion 45(4), 412–427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krein, M.G.: On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability. In: American Mathematical Society Translations, pp. 163–187 (1955)

    Google Scholar 

  18. Murqat, F., Simon, S.: Etudes de problems d’optimal design. Lect. Notes Comput. Sci. 41, 52–62 (1976)

    Google Scholar 

  19. Osher, J., Santosa, F.: Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171, 272–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rayleigh, J.W.S.: The Theory of Sound, vols. 1, 2. Dover, New York (1945)

    MATH  Google Scholar 

  22. Sethian, J., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sokolowski, J., Zolesio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis, vol. 10. Springer, Heidelberg (1992)

    Book  MATH  Google Scholar 

  24. Su, S.: Numerical approaches on shape optimization of elliptic eigenvalue problems and shape study of human brains. PhD thesis, The Ohio State University (2010)

  25. Wayne, A.: Inequalities and inversion of order. Scr. Math. 12, 164–169 (1946)

    Google Scholar 

  26. Zhu, S., Wu, Q., Liu, C.: Variational piecewise constant level set methods for shape optimization of a two-density drum. J. Comput. Phys. 229, 5062–5089 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-Yen Kao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, CY., Su, S. Efficient Rearrangement Algorithms for Shape Optimization on Elliptic Eigenvalue Problems. J Sci Comput 54, 492–512 (2013). https://doi.org/10.1007/s10915-012-9629-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9629-0

Keywords

Navigation