Skip to main content
Log in

Fast Approximation of the Discrete Gauss Transform in Higher Dimensions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a novel approach for the fast approximation of the discrete Gauss transform in higher dimensions. The algorithm is based on the dual-tree technique and introduces a new Taylor series expansion. It compares favorably to existing methods especially when it comes to higher dimensions and a broad range of bandwidths. Numerical results with different datasets in up to 62 dimensions demonstrate its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. We choose direct computation as the only option on leaf level, since it always outperformed Taylor approximation in our numerical experiments with our choice of the parameter q=30. Furthermore, we stop the recursion as soon as one of the nodes S or T is a leaf. In case the other node is still associated to a larger subtree, it might be favorable to further descend in this particular subtree only. However, in our test cases, the sources and targets coincide anyway. Therefore, the two trees are identical and such a general situation can not appear at all.

References

  1. Ayyagari, V.R., Boughorbel, F., Koschan, A., Abidi, M.A.: A new method for automatic 3D face registration. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 3, p. 119 (2005)

    Google Scholar 

  2. Baxter, B.J.C., Roussos, G.: A new error estimate of the fast Gauss transform. SIAM J. Sci. Comput. 24(1), 257–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beatson, R., Greengard, L.: A short course on fast multipole methods. In: Wavelets, Multilevel Methods and Elliptic PDEs, pp. 1–37. Oxford University Press, London (1997)

    Google Scholar 

  4. Boughorbel, F., Koschan, A., Abidi, M.: A new multi-sensor registration technique for three-dimensional scene modeling with application to unmanned vehicle mobility enhancement. In: Unmanned Ground Veh. Technol. VII (SPIE Conf. Proc.), vol. 5804, pp. 174–181 (2005)

    Google Scholar 

  5. Broadie, M., Yamamoto, Y.: Application of the fast Gauss transform to option pricing. Manag. Sci. 49(8), 1071–1088 (2003)

    Article  MATH  Google Scholar 

  6. Broadie, M., Yamamoto, Y.: A double-exponential fast Gauss transform algorithm for pricing discrete path-dependent options. Oper. Res. 53(5), 764–779 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elgammal, A., Duraiswami, R., Davis, L.S.: Efficient kernel density estimation using the fast Gauss transform with applications to color modeling and tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(11), 1499–1504 (2003)

    Article  Google Scholar 

  8. François, D., Wertz, V., Verleysen, M.: About the locality of kernels in high-dimensional spaces. In: Proc. Int. Symp. Appl. Stoch. Models Data Anal. (ASMDA), vol. 8, pp. 238–245 (2005)

    Google Scholar 

  9. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Greengard, L., Strain, J.: The fast Gauss transform. SIAM J. Sci. Stat. Comput. 12(1), 79–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hegland, M., Pestov, V.: Additive models in high dimensions. In: Proc. 12th Comput. Tech. Appl. Conf. (CTAC-2004). ANZIAM J., vol. 46, pp. C1205–C1221 (2005)

    Google Scholar 

  12. Keiner, J., Kunis, S., Potts, D.: Fast summation of radial functions on the sphere. Computing 78, 1–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kunis, S.: Nonequispaced FFT: Generalisation and Inversion. Shaker, Aachen (2006)

    Google Scholar 

  14. Lee, D., Gray, A.: Faster Gaussian summation: theory and experiment. In: Proc. 22nd Annu. Conf. Uncertain. Artif. Intell. (UAI-06). AUAI Press, Arlington (2006)

    Google Scholar 

  15. Lee, D., Gray, A., Moore, A.: Dual-tree fast Gauss transforms. Adv. Neural Inf. Process. Syst. 18, 747–754 (2006)

    Google Scholar 

  16. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  17. Morariu, V.I., Srinivasan, B.V., Raykar, V.C., Duraiswami, R., Davis, L.S.: Automatic online tuning for fast Gaussian summation. In: Proc. 22nd Annu. Conf. Neural Inf. Process. Syst., pp. 1113–1120. MIT Press, Cambridge (2008)

    Google Scholar 

  18. Raykar, V.C., Duraiswami, R.: Very fast optimal bandwidth selection for univariate kernel density estimation. Tech. rep. CS-TR-4774, Dep. Comput. Sci., Univ. Maryland, College Park (2005)

  19. Raykar, V.C., Yang, C., Duraiswami, R., Gumerov, N.A.: Fast computation of sums of Gaussians in high dimensions. Tech. rep. CS-TR-4767, Dep. Comput. Sci., Univ. Maryland, College Park (2005)

  20. Spivak, M., Veerapaneni, S.K., Greengard, L.: The fast generalized Gauss transform. SIAM J. Sci. Comput. 32(5), 3092–3107 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tausch, J., Weckiewicz, A.: Multidimensional fast Gauss transforms by Chebyshev expansions. SIAM J. Sci. Comput. 31, 3547–3565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Verleysen, M.: Learning high-dimensional data. In Limit. Future Trends Neural Comput., vol. 186, pp. 141–162 (2003)

    Google Scholar 

  23. White, D.A., Jain, R.: Similarity indexing: algorithms and performance. In: Storage and Retr. for Still Image and Video Databases IV, vol. 2670, pp. 62–73 (1996)

    Chapter  Google Scholar 

  24. Wissel, D.: The discrete Gauss transform—fast approximation algorithms and applications in high dimensions. Diploma thesis. Inst. Numer. Simul., Univ. Bonn (2008)

  25. Yang, C., Duraiswami, R., Davis, L.: Efficient kernel machines using the improved fast Gauss transform. In: Adv. Neural Inf. Process. Syst., vol. 17, pp. 1561–1568. MIT Press, Cambridge (2004)

    Google Scholar 

  26. Yang, C., Duraiswami, R., Gumerov, N.A., Davis, L.: Improved fast Gauss transform and efficient kernel density estimation. In: Proc. 9th IEEE Int. Conf. Comput. Vis., vol. 1, pp. 664–671 (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Wissel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griebel, M., Wissel, D. Fast Approximation of the Discrete Gauss Transform in Higher Dimensions. J Sci Comput 55, 149–172 (2013). https://doi.org/10.1007/s10915-012-9626-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9626-3

Keywords

Navigation