Skip to main content
Log in

Quadratic Finite Element Approximations of the Monge-Ampère Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We prove several new results of the C 0 finite element method introduced in (S.C. Brenner et al., Math. Comput. 80:1979–1995, 2011) for the fully nonlinear Monge-Ampère equation. These include the convergence of quadratic finite element approximations, W 2,p quasi-optimal error estimates, localized pointwise error estimates, and convergence of Newton’s method with explicit dependence on the discretization parameter. Numerical experiments are presented which back up the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bernardi, C.: Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26(5), 1212–1240 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baginski, F.E., Whitaker, N.: Numerical solutions of boundary value problems for \(\mathcal {K}\)-surfaces in R 3. Numer. Methods Partial Differ. Equ. 12(4), 525–546 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benamou, J., Brenier, Y.: Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère/transport problem. SIAM J. Appl. Math. 58, 1450–1461 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring I, Math. Comput. 47(175), 103–134 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  8. Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Gudi, T., Neilan, M., Sung, L.-Y.: C 0 penalty methods for the Monge-Ampère equation. Math. Comput. 80, 1979–1995 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Neilan, M.: Finite element approximations of the three dimensional Monge-Ampère equation. M2AN Math. Model. Numer. Anal. 46(5), 979–1001 (2012)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation. Commun. Pure Appl. Math. 37(3), 369–402 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L.A., Milman, M.: Monge-Ampère Equation: Applications to Geometry and Optimization. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  13. COMSOL Multiphysics Software Package, http://www.comsol.com

  14. Chen, Z., Chen, H.: Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems. SIAM J. Numer. Anal. 42(3), 1146–1166 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Book  MATH  Google Scholar 

  16. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley, New York (1989)

    Book  Google Scholar 

  17. Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Math. Acad. Sci. Paris 336(9), 779–784 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: a least-squares approach. C. R. Math. Acad. Sci. Paris 339(12), 887–892 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. Electron. Trans. Numer. Anal. 22, 71–96 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Methods Appl. Mech. Eng. 195(13–16), 1344–1386 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Delzanno, G.L., Chacón, L., Finn, J.M., Chung, Y., Lapenta, G.: An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization. J. Comput. Phys. 227(23), 9841–9864 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Demlow, A.: Sharply localized pointwise and \(W^{-1}_{\infty}\) estimates for finite element methods for quasilinear problems. Math. Comput. 76(260), 1725–1741 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Evans, L.C.: Partial Differential Equations and Monge-Kantorovich Mass Transfer, Current Developments in Mathematics, pp. 65–126. Int. Press, Boston (1999)

    Google Scholar 

  24. Feng, X., Neilan, M.: Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations. J. Sci. Comput. 38(1), 74–98 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47(2), 1226–1250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng, X., Neilan, M.: Analysis of Galerkin methods for the fully nonlinear Monge-Ampère equation. J. Sci. Comput. 47(3), 303–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Frisch, M., Matarrese, S., Mohayaee, R., Sobolevski, A.: A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature 417, 260–262 (2002)

    Article  Google Scholar 

  28. Froese, B.D., Oberman, A.M.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49, 1692–1714 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Froese, B.D., Oberman, A.M.: Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation. J. Comput. Phys. 230(3), 818–834 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  31. Guan, B., Spruck, J.: Boundary-value problems on S n for surfaces of constant Gauss curvature. Ann. Math. 138(3), 601–624 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guan, B.: The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature. Trans. Am. Math. Soc. 350(12), 4955–4971 (1998)

    Article  MATH  Google Scholar 

  33. Guan, B., Spruck, J.: The existence of hyper surfaces of constant Gauss curvature with prescribed boundary. J. Differ. Geom. 62(2), 259–287 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Gutierrez, C.E.: The Monge-Ampère Equation. Progress in Nonlinear Differential Equations and Their Applications, vol. 44. Birkhauser, Boston (2001)

    Book  MATH  Google Scholar 

  35. Neilan, M.: Localized pointwise error estimates and global L p error estimates for Nietzsche’s method. Int. J. Numer. Anal. Model. Ser. B 2(4), 338–354 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Nitsche, J.A.: Über ein Variationspirinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unteworfen sind. Abh. Math. Semin. Univ. Hamb. 36, 9–15 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  37. Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst., Ser. B 10(1), 221–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Oliker, V.I., Prussner, L.D.: On the numerical solution of the equation ( 2 z/∂x 2)( 2 z/∂y 2)−( 2 z/∂x∂y)2=f and its discretizations. Numer. Math. 54(3), 271–293 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schatz, A.H.: Interior maximum norm estimates for finite element methods, Part II. Math. Comput. 64, 907–928 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Schatz, A.H.: Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids, Part I. Global estimates. Math. Comput. 67(223), 877–899 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Trudinger, N.S., Wang, X.-J.: The Monge-Ampère equation and its geometric applications, vol. I. In: Handbook of Geometric Analysis, pp. 467–524. International Press, Somerwille (2008)

    Google Scholar 

  42. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The work of this author was supported by the National Science Foundation under grant number DMS-1115421.

The author would like to thank Susanne C. Brenner and Li-Yeng Sung for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Neilan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neilan, M. Quadratic Finite Element Approximations of the Monge-Ampère Equation. J Sci Comput 54, 200–226 (2013). https://doi.org/10.1007/s10915-012-9617-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9617-4

Keywords

Navigation