Skip to main content
Log in

Analysis of an Interior Penalty Method for Fourth Order Problems on Polygonal Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Error analysis for a stable C 0 interior penalty method is derived for general fourth order problems on polygonal domains under minimal regularity assumptions on the exact solution. We prove that this method exhibits quasi-optimal order of convergence in the discrete H 2, H 1 and L 2 norms. L norm error estimates are also discussed. Theoretical results are demonstrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balasundaram, S., Bhattacharyya, P.K.: On existence of solution of the Dirichlet problem of fourth order partial differential equations with variable coefficients. Q. Appl. Math. 39, 311–317 (1983)

    MathSciNet  Google Scholar 

  4. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A higher order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.) Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen (1997)

    Google Scholar 

  5. Bhattacharyya, P.K., Nataraj, N.: Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients. Modél. Math. Anal. Numér. 36, 1–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  7. Brenner, S.C., Sung, L.-Y.: C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)

    Article  MathSciNet  Google Scholar 

  8. Brenner, S.C., Sung, L.-Y.: Multigrid algorithms for C 0 interior penalty methods. SIAM J. Numer. Anal. 44, 199–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Wang, K.: Two-level additive Schwarz preconditioners for C 0 interior penalty methods. Numer. Math. 102, 231–255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Gudi, T., Sung, L.-Y.: An a posteriori error estimator for a quadratic C 0 interior penalty method for the biharmonic problem. IMA J. Numer. Anal. 30, 777–798 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, S.C., Neilan, M.: A C 0 interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49, 869–892 (2010)

    Article  MathSciNet  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Book  MATH  Google Scholar 

  13. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40, 141–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dung, N.T., Wells, G.N.: Geometrically nonlinear formulation for thin shells without rotation degrees of freedom. Comput. Methods Appl. Mech. Eng. 197, 2778–2788 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669–3750 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, X., Karakashian, O.A.: Two-level nonoverlapping additive Schwarz methods for a discontinuous Galerkin approximation of the biharmonic problem. J. Comput. Sci. 22, 299–324 (2005)

    MathSciNet  Google Scholar 

  18. Georgoulis, E.H., Houston, P.: Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29, 573–594 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  20. Grisvard, P.: Singularities in Boundary Value Problems. Springer, Berlin (1992)

    MATH  Google Scholar 

  21. Gudi, T., Nataraj, N., Pani, A.K.: Mixed discontinuous Galerkin methods for the biharmonic equation. J. Sci. Comput. 37, 103–232 (2008)

    Article  MathSciNet  Google Scholar 

  22. Gudi, T.: A New error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79, 2169–2189 (2010), available online

    Article  MathSciNet  MATH  Google Scholar 

  23. Hansbo, P., Larson, M.G.: A discontinuous Galerkin method for the plate equation. Calcolo 39, 41–59 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, J., Huang, X., Han, W.: A new C 0 discontinuous Galerkin method for Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 199, 1446–1454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kesavan, S.: Topics in Functional Analysis and Applications. New Age International(P). Limited, New Delhi (1989)

    MATH  Google Scholar 

  26. Kulshreshtha, K., Nataraj, N., Jung, M.: Performance of a parallel mixed finite element implementation for fourth order clamped anisotropic plate bending problems in distributed memory environments. Appl. Math. Comput. 155, 753–777 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mozolevski, I., Süli, E., Bösing, P.R.: hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30, 465–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nitsche, J.A.: Uber ein Variationsprinzip zur Losung Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unteworfen sind. Abh. Math. Semin. Univ. Hamb. 36, 915 (1971)

    Article  MathSciNet  Google Scholar 

  29. Reddy, J., Gera, R.: An improved finite-difference analysis of bending of thin rectangular elastic plates. Compos. Struct. 10, 431–438 (1979)

    Article  MATH  Google Scholar 

  30. Süli, E., Mozolevski, I.: hp-version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196, 1851–1863 (2007)

    Article  MATH  Google Scholar 

  31. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. In: Proceedings of the Fifth International Congress on Computational and Applied Mathematics, Leuven, 1992, vol. 50, pp. 67–83 (1994)

    Google Scholar 

  32. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1995)

    Google Scholar 

  33. Wells, G.N., Dung, N.T.: A C 0 discontinuous Galerkin formulation for Kirchoff plates. Comput. Methods Appl. Mech. Eng. 196, 3370–3380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xia, Y., Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Cahn-Hilliard type equations. J. Comput. Phys. 227, 472–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirupathi Gudi.

Additional information

The first author’s research is supported by the UGC center for advanced study.

The second author’s research is supported in part by the UGC center for advanced study and in part by the National Board for Higher Mathematics.

Appendix

Appendix

In this section, we present the detailed derivation of the USIP method. In the derivation, we assume that the coefficient \(\mathbb{A}\) and the solution u of (1.4) are sufficiently smooth. It is important to point out here that this smoothness assumption is only used to motivate the interior penalty method. However, abstract and concrete error estimates that are obtained in Sects. 3 and 4 are derived under minimal regularity assumptions.

Note that the solution u of (1.4) satisfies

(6.1)
(6.2)

where \((\nabla \cdot \varPhi)_{i} = \sum_{j=1}^{2} \partial_{j} \phi_{ij}\)ΦW.

A key for the derivation is to split the fourth order equation (6.1) into a system of second order equations by introducing the auxiliary variables p and Ψ as follows:

(6.3)
(6.4)
(6.5)
(6.6)

Remark 5.1

In aniso -/ortho -/ isotropic / biharmonic plate bending problems, u denotes the deflection of the bent plate, p=(u ,ij )(i,j=1,2) denote the components of the change in curvature tensor and Ψ=(ψ ij )=(a ijkl u ,kl ) (i,j=1,2) denote the bending and twisting moments in the plate.

Remark 5.2

The USIP method can also be derived by splitting the fourth order equation into a system of first order equations [18, 34].

We will now use the following Green’s formula: \(\forall T \in \mathcal{T}_{h}\),

(6.7)

where t=(t 1,t 2) denotes the unit tangent vector along ∂T, (Φn) i =ϕ i1 n 1+ϕ i2 n 2 (i=1,2) for ΦW and n=(n 1,n 2).

Multiply (6.5) with v h V h , use the Green’s formula (6.7) and the fact that \([\hskip -2.2pt[(\nabla \cdot \varPsi) \cdot n]\hskip -2.2pt]=[\hskip -2.2pt[n\cdot \varPsi \cdot n]\hskip -2.2pt]=[\hskip -2.2pt[n\cdot \varPsi \cdot t]\hskip -2.2pt]=0\) for all \(e\in \mathcal{E}_{h}^{i}\) to obtain

Multiply (6.3) with q h W h , integrate over Ω, add a zero term using the fact that \([\hskip -2.2pt[\partial u/\partial n]\hskip -2.2pt]=0\) for all \(e\in \mathcal{E}_{h}\) to obtain:

(6.8)

Note that though the second term on the right hand side of (6.8) is not zero when u is substituted by u h .

For \(v\in H^{2}(\varOmega, \mathcal{T}_{h})\) and qW, define the bilinear form B h (⋅,⋅) by:

(6.9)

Note that if u,p and Ψ are sufficiently smooth, then they satisfy the following equations:

(6.10)
(6.11)
(6.12)

where the bilinear form J is defined by (2.3).

Based on (6.10)–(6.12), we formulate the interior penalty method defined by:

Find (u h ,p h ,Ψ h )∈V h ×W h ×W h such that

(6.13)
(6.14)
(6.15)

Primal Formulation

With the help of a lifting operator \(\mathcal{R}_{h}:H^{2}(\varOmega,\mathcal{T}_{h}) \rightarrow \mathbf{W}_{h}\) defined in (2.2), we derive the primal formulation (2.4) involving only one unknown u h which was defined in Sect. 2. However since the global mass matrix is block diagonal, the equations (6.13)–(6.15) can be used to compute the global stiffness matrix for the primal formulation without computing the lifting operators \(\mathcal{R}_{h}\), see [21] for more details.

From (6.13), (6.9) and (2.2),

$$ \mathbf{p}_h=D^2_hu_h+\mathcal{R}_h(u_h). $$
(6.16)

Use (6.16) in (6.14) to obtain

(6.17)

where Π h :[L 2(Ω)]2×2W h is the L 2-projection defined by

(6.18)

Using (2.2), we rewrite (6.15) as

which together with (6.17) implies,

$$ \bigl(\bigl(\mathbb{A}\oplus \bigl(D^2 u_h +\mathcal{R}_h(u_h) \bigr),\,D^2 v_h +\mathcal{R}_h(v_h) \bigr)\bigr) +J(u_h,v_h)=f(v_h) \quad \forall v_h \in V_h. $$
(6.19)

Below, we derive error estimates for the auxiliary variables.

Theorem 5.3

For p and p h satisfying (6.3) and (6.16) respectively, ∃ a positive constant C such that, for v h V h , the following estimate holds true:

Proof

From (6.3) and (6.16), we note that \(\mathbf{p}-\mathbf{p}_{h}= D^{2}_{h}(u-u_{h})-\mathcal{R}_{h}(u_{h})\). Since \(\mathcal{R}_{h}(u)=0\), we have \(\mathbf{p}-\mathbf{p}_{h}= D^{2}_{h}(u-u_{h})+\mathcal{R}_{h}(u-u_{h})\). A use of triangle inequality, Lemma 2.1 and Theorem 3.1 completes the proof. □

Theorem 5.4

For Ψ and Ψ h satisfying (6.4) and (6.17) respectively, ∃ a positive constant C such that

where Π h is the L 2 projection onto W h defined by (6.18) and v h V h .

Proof

We note from (6.17) that

Since , we find for any w h W h that

Therefore,

The proof now follows from triangle inequality and Theorem 6.3. □

The following error estimates can be deduced easily from Theorem 6.3 and Theorem 6.4.

Theorem 5.5

For the solutions p and p h of (6.3) and (6.16) respectively, and Ψ and Ψ h of (6.4) and (6.17) respectively, the following estimates hold true:

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudi, T., Gupta, H.S. & Nataraj, N. Analysis of an Interior Penalty Method for Fourth Order Problems on Polygonal Domains. J Sci Comput 54, 177–199 (2013). https://doi.org/10.1007/s10915-012-9612-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9612-9

Keywords

Navigation