Skip to main content
Log in

Upwind-Difference Potentials Method for Patlak-Keller-Segel Chemotaxis Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a novel upwind-difference potentials method for the Patlak-Keller-Segel chemotaxis model that can be used to approximate problems in complex geometries. The chemotaxis model under consideration is described by a system of two nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the chemoattractant concentration.

Chemotaxis is an important process in many medical and biological applications, including bacteria/cell aggregation and pattern formation mechanisms, as well as tumor growth. Furthermore modeling of real biomedical problems often has to deal with the complex structure of computational domains. There is consequently a need for accurate, fast, and computationally efficient numerical methods for different chemotaxis models that can handle arbitrary geometries.

The upwind-difference potentials method proposed here handles complex domains with the use of only Cartesian meshes, and can be easily combined with fast Poisson solvers. In the numerical tests presented below we demonstrate the robustness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Adler, J.: Chemotaxis in bacteria. Annu. Rev. Biochem. 44, 341–356 (1975)

    Article  Google Scholar 

  2. Bonner, J.T.: The Cellular Slime Molds, 2nd edn. Princeton University Press, Princeton (1967)

    Google Scholar 

  3. Bryson, S., Epshteyn, Y., Kurganov, A., Petrova, G.: Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. ESAIM Math. Model. Numer. Anal. 45(3), 423–446 (2011)

    Article  MathSciNet  Google Scholar 

  4. Budrene, E.O., Berg, H.C.: Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633 (1991)

    Article  Google Scholar 

  5. Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)

    Article  Google Scholar 

  6. Buffard, T., Clain, S.: Monoslope and multislope muscl methods for unstructured meshes. J. Comput. Phys. 229(10), 3745–3776 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calgaro, C., Chane-Kane, E., Creusé, E., Goudon, T.: L -stability of vertex-based MUSCL finite volume schemes on unstructured grids: simulation of incompressible flows with high density ratios. J. Comput. Phys. 229(17), 6027–6046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chainais-Hillairet, C., Filbet, F.: Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model. IMA J. Numer. Anal. 27(4), 689–716 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. Modél. Math. Anal. Numér. 37(2), 319–338 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chertock, A., Epshteyn, Y., Kurganov, A.: High-order finite-difference and finite-volume methods for chemotaxis models (2010, in preparation)

  11. Chertock, A., Kurganov, A.: A positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111, 169–205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Childress, S., Percus, J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christov, I., Popov, B.: New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J. Comput. Phys. 227(11), 5736–5757 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen, M.H., Robertson, A.: Wave propagation in the early stages of aggregation of cellular slime molds. J. Theor. Biol. 31, 101–118 (1971)

    Article  Google Scholar 

  15. Coudière, Y., Gallouët, T., Herbin, R.: Discrete Sobolev inequalities and L p error estimates for finite volume solutions of convection diffusion equations. Modél. Math. Anal. Numér. 35(4), 767–778 (2001)

    Article  MATH  Google Scholar 

  16. Coudière, Y., Vila, J.-P., Villedieu, P.: Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. Modél. Math. Anal. Numér. 33(3), 493–516 (1999)

    Article  MATH  Google Scholar 

  17. Domelevo, K., Omnes, P.: A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. Modél. Math. Anal. Numér. 39(6), 1203–1249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Epshteyn, Y.: Discontinuous Galerkin methods for the chemotaxis and haptotaxis models. J. Comput. Appl. Math. 224(1), 168–181 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model. J. Sci. Comput. 40(1–3), 211–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. SIAM J. Numer. Anal. 47(1), 386–408 (2008/09)

    Article  MathSciNet  Google Scholar 

  21. Filbet, F.: A finite volume scheme for the Patlak-Keller-Segel chemotaxis model. Numer. Math. 104, 457–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haškovec, J., Schmeiser, C.: Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system. J. Stat. Phys. 135(1), 133–151 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 24(4), 633–683 (1998)

    Google Scholar 

  24. Horstmann, D.: From 1970 until now: the Keller-Segel model in chemotaxis and its consequences i. Jahresber. Dtsch. Math.-Ver. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Horstmann, D.: From 1970 until now: the Keller-Segel model in chemotaxis and its consequences ii. Jahresber. Dtsch. Math.-Ver. 106, 51–69 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics, vol. 33. Springer, Berlin (2003)

    MATH  Google Scholar 

  27. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  Google Scholar 

  28. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  Google Scholar 

  29. Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)

    Article  Google Scholar 

  30. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5(1), 133–160 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Marrocco, A.: 2d simulation of chemotaxis bacteria aggregation. Modél. Math. Anal. Numér. 37, 617–630 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mehmetoglu, O., Popov, B.: Maximum principle and convergence of central schemes based on slope limiters. Math. Comput. 81(277), 219–231 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nanjundiah, V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)

    Article  Google Scholar 

  35. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  37. Perthame, B.: Transport Equations in Biology. Frontiers in Mathematics. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  38. Prescott, L.M., Harley, J.P., Klein, D.A.: Microbiology, 3rd edn. Wm. C. Brown Publishers, Chicago (1996)

    Google Scholar 

  39. Ryaben’kiĭ, V.S., Turchaninov, V.I., Èpshteĭn, E.Yu.: An algorithm composition scheme for problems in composite domains based on the method of difference potentials. Zh. Vychisl. Mat. Mat. Fiz. 46(10), 1853–1870 (2006)

    MathSciNet  Google Scholar 

  40. Ryaben’kii, V.S.: Method of Difference Potentials and Its Applications. Springer, Berlin (2001)

    Google Scholar 

  41. Saito, N.: Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis. IMA J. Numer. Anal. 27(2), 332–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Comput. Methods Appl. Math. 10(2), 219–232 (2010)

    MathSciNet  Google Scholar 

  43. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102(7), 2277–2282 (2005)

    Article  Google Scholar 

  44. Tyson, R., Lubkin, S.R., Murray, J.D.: A minimal mechanism for bacterial pattern formation. Proc. R. Soc. Lond. B 266, 299–304 (1999)

    Article  Google Scholar 

  45. Tyson, R., Stern, L.G., LeVeque, R.J.: Fractional step methods applied to a chemotaxis model. J. Math. Biol. 41, 455–475 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The author is grateful to Viktor Ryaben’kii for his helpful discussion. The research is supported in part by the National Science Foundation Grant # DMS-1112984.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekaterina Epshteyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epshteyn, Y. Upwind-Difference Potentials Method for Patlak-Keller-Segel Chemotaxis Model. J Sci Comput 53, 689–713 (2012). https://doi.org/10.1007/s10915-012-9599-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9599-2

Keywords

Navigation