Skip to main content
Log in

Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Conventional high-order finite element methods are rarely used for industrial problems because the Jacobian rapidly loses sparsity as the order is increased, leading to unaffordable solve times and memory requirements. This effect typically limits order to at most quadratic, despite the favorable accuracy and stability properties offered by quadratic and higher order discretizations. We present a method in which the action of the Jacobian is applied matrix-free exploiting a tensor product basis on hexahedral elements, while much sparser matrices based on Q 1 sub-elements on the nodes of the high-order basis are assembled for preconditioning. With this “dual-order” scheme, storage is independent of spectral order and a natural taping scheme is available to update a full-accuracy matrix-free Jacobian during residual evaluation. Matrix-free Jacobian application circumvents the memory bandwidth bottleneck typical of sparse matrix operations, providing several times greater floating point performance and better use of multiple cores with shared memory bus. Computational results for the p-Laplacian and Stokes problem, using block preconditioners and AMG, demonstrate mesh-independent convergence rates and weak (bounded) dependence on order, even for highly deformed meshes and nonlinear systems with several orders of magnitude dynamic range in coefficients. For spectral orders around 5, the dual-order scheme requires half the memory and similar time to assembled quadratic (Q 2) elements, making it very affordable for general use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth, M., Senior, B.: An adaptive refinement strategy for hp-finite element computations. Appl. Numer. Math. 26(1), 165–178 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report ANL-95/11—Revision 3.0.0, Argonne National Laboratory (2008)

  3. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blacker, T., Bohnhoff, W., Edwards, T., Hipp, J., Lober, R., Mitchell, S., Sjaardema, G., Tautges, T., Wilson, T., Oakes, W., et al.: CUBIT mesh generation environment. Technical report, Sandia National Labs., Albuquerque, NM. Cubit Development Team (1994)

  5. Demkowicz, L., Oden, J.T., Rachowicz, W., Hardy, O.: Toward a universal hp adaptive finite element strategy. I: Constrained approximation and data structure. Comput. Methods Appl. Mech. Eng. 77, 79–112 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic hp-adaptivity. J. Sci. Comput. 17(1), 117–142 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deville, M., Mund, E.: Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning. J. Comput. Phys. 60, 517 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deville, M.O., Mund, E.H.: Finite-element preconditioning for pseudospectral solutions of elliptic problems. SIAM J. Sci. Stat. Comput. 11, 311 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Elman, H.C., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. J. Comput. Phys. 227(1), 1790–1808 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Evans, L.C.: The 1-Laplacian, the ∞-Laplacian and differential games. Perspect. Nonlinear Partial Differ. Equ.: In Honor of Haim Brezis 446, 245 (2007)

    Google Scholar 

  12. Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala, M.G.: ML 5.0 smoothed aggregation user’s guide. Technical Report SAND2006-2649, Sandia National Laboratories (2006)

  13. Gropp, W.D., Kaushik, D.K., Keyes, D.E., Smith, B.: Performance modeling and tuning of an unstructured mesh cfd application. In: Supercomputing ’00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing (CDROM), Washington, DC, USA, 2000, p. 34. IEEE Computer Society, New York (2000)

    Google Scholar 

  14. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Heys, J.J., Manteuffel, T.A., McCormick, S.F., Olson, L.N.: Algebraic multigrid for higher-order finite elements. J. Comput. Phys. 204(2), 520–532 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Interoperable technologies for advanced petascale simulations (ITAPS). http://www.itaps.org/

  17. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  18. Kim, S.D.: Piecewise bilinear preconditioning of high-order finite element methods. Electron. Trans. Numer. Anal. 26, 228–242 (2007)

    MATH  MathSciNet  Google Scholar 

  19. Kirk, B., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006). http://dx.doi.org/10.1007/s00366-006-0049-3

    Article  Google Scholar 

  20. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Knoll, D.A., McHugh, P.R.: Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow. SIAM J. Sci. Comput. 19(1), 291–301 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lottes, J.W., Fischer, P.F.: Hybrid multigrid/Schwarz algorithms for the spectral element method. J. Sci. Comput. 24(1), 45–78 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. May, D.A., Moresi, L.: Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics. Phys. Earth Planet. Inter. 171(1–4), 33–47 (2008). Recent Advances in Computational Geodynamics: Theory, Numerics and Applications

    Article  Google Scholar 

  24. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21(6), 1969–1972 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nachtigal, N.M., Reddy, S.C., Trefethen, L.N.: How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal. Appl. 13, 778 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Oden, J.T., Demkowicz, L., Rachowicz, W., Westermann, T.A.: Toward a universal hp adaptive finite element strategy. II: A posteriori error estimation. Comput. Methods Appl. Mech. Eng. 77, 113–180 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 70–92 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rachowicz, W., Oden, J.T., Demkowicz, L.: Toward a universal hp adaptive finite element strategy. III: Design of hp meshes. Comput. Methods Appl. Mech. Eng. 77, 181–212 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schötzau, D., Schwab, C., Stenberg, R.: Mixed hp-FEM on anisotropic meshes. Math. Models Methods Appl. Sci. 8, 787–820 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schwab, C.: P- and Hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  31. Tautges, T.J.: CGM: a geometry interface for mesh generation, analysis and other applications. Eng. Comput. 17(3), 299–314 (2001)

    Article  MATH  Google Scholar 

  32. Tautges, T.J., Meyers, R., Merkley, K., Stimpson, C., Ernst, C.: MOAB: a mesh-oriented database. Technical report, Sandia National Laboratories, April 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jed Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J. Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D. J Sci Comput 45, 48–63 (2010). https://doi.org/10.1007/s10915-010-9396-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9396-8

Keywords

Navigation