Skip to main content
Log in

A Supra-Convergent Finite Difference Scheme for the Poisson and Heat Equations on Irregular Domains and Non-Graded Adaptive Cartesian Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

We present finite difference schemes for solving the variable coefficient Poisson and heat equations on irregular domains with Dirichlet boundary conditions. The computational domain is discretized with non-graded Cartesian grids, i.e., grids for which the difference in size between two adjacent cells is not constrained. Refinement criteria is based on proximity to the irregular interface such that cells with the finest resolution is placed on the interface. We sample the solution at the cell vertices (nodes) and use quadtree (in 2D) or octree (in 3D) data structures as efficient means to represent the grids. The boundary of the irregular domain is represented by the zero level set of a signed distance function. For cells cut by the interface, the location of the intersection point is found by a quadratic fitting of the signed distance function, and the Dirichlet boundary value is obtained by quadratic interpolation. Instead of using ghost nodes outside the interface, we use directly this intersection point in the discretization of the variable coefficient Laplacian. These methods can be applied in a dimension-by-dimension fashion, producing schemes that are straightforward to implement. Our method combines the ability of adaptivity on quadtrees/octrees with a quadratic treatment of the Dirichlet boundary condition on the interface. Numerical results in two and three spatial dimensions demonstrate second-order accuracy for both the solution and its gradients in the L 1 and L norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aftosmis, M. J., Berger, M. J., and Melton, J. E. (1998). Adaptive Cartesian mesh generation. In CRC Handbook of Mesh Generation (Contributed Chapter).

  2. Almgren, A. (1991). A Fast Adaptive Vortex Method Using Local Corrections. PhD thesis, University of California, Berkeley.

  3. Almgren A., Bell J., Colella P., Howell L., Welcome M. (1998) A conservative adaptive projection method for the variable density incompressible navier-stokes equations. J. Comput. Phys 142: 1–46

    Article  MATH  MathSciNet  Google Scholar 

  4. Almgren A., Buttke R., Colella P. (1994) A fast adaptive vortex method in three dimensions. J. Comput. Phys. 113: 177–200

    Article  MATH  MathSciNet  Google Scholar 

  5. Berger M., Olige J. (1984) Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53: 484–512

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen S., Merriman B., Osher S., Smereka P. (1997) A simple level set method for solving Stefan problems. J. Comput. Phys. 135: 8–29

    Article  MATH  MathSciNet  Google Scholar 

  7. Babuska I., Flaherty J.E., Henshaw W.D., Hopcroft J.E., Oliger J.E., Tezduyar T. (eds) (1995) Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations. Springer Verlag, Berlin, 450 pp

    MATH  Google Scholar 

  8. Fedkiw R., Aslam T., Merriman B., Osher S. (1999) A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152: 457–492

    Article  MATH  MathSciNet  Google Scholar 

  9. Gibou F., Fedkiw R. (2005) A fourth order accurate discretization for the laplace and heat equations on arbitrary domains, with applications to the stefan problem. J, Comput. Phys. 202: 577–601

    Article  MATH  MathSciNet  Google Scholar 

  10. Gibou F., Fedkiw R., Caflisch R., Osher S. (2003) A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19: 183–199

    MATH  MathSciNet  Google Scholar 

  11. Gibou F., Fedkiw R., Cheng L.-T., Kang M. (2002) A second–order–accurate symmetric discretization of the poisson equation on irregular domains. J. Comput. Phys. 176: 205–227

    Article  MATH  MathSciNet  Google Scholar 

  12. Johansen H., Colella P. (1998) A cartesian grid embedded boundary method for poisson’s equation on irregular domains. J. Comput. Phys. 147: 60–85

    Article  MATH  MathSciNet  Google Scholar 

  13. Johnson C. (1987) Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, New York, NY

    MATH  Google Scholar 

  14. Jomaa Z., Macaskill C. (2005) The embedded finite difference method for the poisson equation in a domain with an irregular boundary and dirichlet boundary conditions. J. Comput. Phys. 202: 488–506

    Article  MATH  MathSciNet  Google Scholar 

  15. Kreiss H.O., Manteuffel H.-O., Schwartz T.A., Wendroff B., White A.B. Jr. (1986) Supra-convergent schemes on irregular grids. Math. Comp. 47: 537–554

    Article  MATH  MathSciNet  Google Scholar 

  16. LeVeque R., Li Z. (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31: 1019–1044

    Article  MATH  MathSciNet  Google Scholar 

  17. Lipnikov K., Morel J., Shashkov M. (2004) Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys. 199: 589–597

    Article  MATH  Google Scholar 

  18. Liu X., Fedkiw R., Kang M. (2000) A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 154: 151

    MathSciNet  Google Scholar 

  19. Losasso F., Fedkiw R., Osher S. (2006) Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35: 995–1010

    Article  MathSciNet  Google Scholar 

  20. Losasso F., Gibou F., Fedkiw R. (2004) Simulating water and smoke with an octree data structure. SIGGRAPH 2004, ACM TOG 23: 457–462

    Article  Google Scholar 

  21. Manteuffel T., White A. (1986) The numerical solution of second-order boundary value problems on nonuniform meshes. Math. Comput. 47(176): 511–535

    MATH  MathSciNet  Google Scholar 

  22. Mayo A. (1984) The fast solution of poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21: 285–299

    Article  MathSciNet  Google Scholar 

  23. McCorquodale P., Colella P., Grote D., Vay J.-L. (2004) A node-centered local refinement algorithm for poisson’s equation in complex geometries. J. Comput. Phys. 201: 34–60

    Article  MATH  MathSciNet  Google Scholar 

  24. McKenney A., Greengard L. (1995) A fast poisson solver for complex geometries. J. Comput. Phys. 118: 348–355

    Article  MATH  MathSciNet  Google Scholar 

  25. Min C., Gibou F., Ceniceros H.D. (2006) A supra-convergent finite difference scheme for the variable coefficient poisson equation on non-graded grids. J. Comput. Phys. 218(1): 123–140

    Article  MATH  MathSciNet  Google Scholar 

  26. Peskin C. (1977) Numerical analysis of blood flow in the heart. J. Comput. Phys. 25: 220–252

    Article  MATH  MathSciNet  Google Scholar 

  27. Popinet S. (2003) Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries. J. Comput. Phys. 190: 572–600

    Article  MATH  MathSciNet  Google Scholar 

  28. Saad Y. (1996) Iterative Methods for Sparse Linear Systems. PWS Publishing, New York, NY

    MATH  Google Scholar 

  29. Samet H. (1989) The Design and Analysis of Spatial Data Structures. Addison-Wesley, New York

    Google Scholar 

  30. Samet H. (1990) Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS. Addison-Wesley, New York

    Google Scholar 

  31. Schmidt A. (1996) Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 125: 293–312

    Article  MATH  Google Scholar 

  32. Shortley G.H., Weller R. (1938) The numerical solution of laplace’s equation. J. Appl. Phys. 9: 334–348

    Article  MATH  Google Scholar 

  33. Strain J. (1999) Tree methods for moving interfaces. J. Comput. Phys. 151: 616–648

    Article  MATH  MathSciNet  Google Scholar 

  34. Verfurth R. (1996) A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Berlin

    Google Scholar 

  35. Young D., Melvin R., Bieterman M., Johnson F., Samant S., Bussoletti J. (1991) A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics. J. Comput. Phys. 92: 1–66

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Gibou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Min, C. & Gibou, F. A Supra-Convergent Finite Difference Scheme for the Poisson and Heat Equations on Irregular Domains and Non-Graded Adaptive Cartesian Grids. J Sci Comput 31, 19–60 (2007). https://doi.org/10.1007/s10915-006-9122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9122-8

Keywords

Navigation