Skip to main content

Advertisement

Log in

Morphological Variation of the Forelimb and Claw in Neotropical Sigmodontine Rodents (Rodentia: Cricetidae)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The limbs of mammals exhibit a variety of morphologies that reflect the diversity of their habitats and their functional needs, including subtle structural differences in their distal limb integumentary appendages (hooks, claws, adhesive pads). Little is known about structure and function of claws of sigmodontine rodents. Here, we analyze claw shape and forelimb skeleton morphology of 25 species of sigmodontine rodents with different locomotory types (ambulatory, fossorial, natatorial, quadrupedal saltatorial, and scansorial), taking into account their phylogenetic affinities. Qualitative differences in claw shape were examined using digital photographs, and quantitative measurements were made for length, height, and curvature of the claws of all digits, and dimensions of other forelimb skeletal elements. Our results show that both phylogeny and ecological categories explain substantial components of the morphological variation in sigmodontine rodents. Qualitative analysis reveals that non-specialized forms (ambulatory, quadrupedal saltatorial, and scansorial) tend to have high and strongly curved claws, whereas highly specialized forms (fossorial and natatorial) tend to have elongate and smoothly curved claws. However, the quantitative analysis differentiated the fossorial and scansorial by variables related to claw, and natatorial by variables related to bones of the forelimb. No variables that could differentiate ambulatory or quadrupedal saltatorial forms were found, demonstrating that these forms show a generalized morphological pattern. This study indicates that both historical and ecological factors contribute to the evolution of claw length in these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdala V, Manzano A, Tulli M J, Herrel A (2009) The tendinous patterns in the palmar surface of the lizard manus: tests of functional consequences for grasping ability. Anat Rec 292:842–853

    Article  Google Scholar 

  • Arnold SJ (1983) Morphology, performance, and fitness. Am Zool 23:347–361

    Article  Google Scholar 

  • Barlow JC (1969) Observations on the biology of rodents in Uruguay. In: Wiggens GB, Peterson RL (eds) Life Sciences Contributions Vol 75. Royal Ontario Museum, Canada, pp 1–59

    Google Scholar 

  • Blomberg SP, Garland T Jr. (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation comparative methods. J Evol Biol 15:899–910

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Carrizo LV, Díaz M (2011) Descripción del postcráneo de Rhipidomys austrinus y Graomys griseoflavus. Iheringia Ser Zool 101:207–219

    Article  Google Scholar 

  • Carrizo LV, Tulli MJ, Abdala V (2014a) An ecomorphological analysis of forelimb musculo-tendinous system in sigmodontine rodents (Rodentia: Cricetidae: Sigmodontinae). J Mammal 95:843–854.

    Article  Google Scholar 

  • Carrizo LV, Tulli MJ, Dos Santos DA, Abdala V (2014b) Interplay between postcranial and locomotor types in Neotropical sigmodontine rodents. J Anat 224:469–481

    Article  PubMed  Google Scholar 

  • Cartmill M (1985) Climbing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional Vertebrate Morphology. Harvard University Press, Cambridge, pp 73–88

    Google Scholar 

  • Carvalho Coutinho L, Alves de Oliveira J, Pessoa LM (2013) Morphological variation in appendicular skeleton of Atlantic Forest sigmodontine rodents. J Morphol 274:779–792

    Article  Google Scholar 

  • Corbalán V, Debandi G (2009) Evaluating microhabitat selection by Calomys musculinus (Rodentia: Cricetidae) in western Argentina using luminous powders. Mastozool Neotrop 16:205–210

    Google Scholar 

  • D’Elía G (2003) Phylogenetics of Sigmodontinae (Rodentia, Muroidea, Cricetidae), with special reference to the akodont group, and with additional comments on historical biogeography. Cladistics 19:307–323

    Article  Google Scholar 

  • Darwin C (1859) The Origin of Species by Means of Natural Selection, 1st ed. John Murray Publishing, London

    Google Scholar 

  • Fabre PH, Hautier L, Dimitrov D, Douzery EJP (2012) A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol 12:88

    Article  PubMed Central  PubMed  Google Scholar 

  • Feijoo M, D’Elía G, Pardiñas UFJ, Lessa E (2008) Systematics of the southern Patagonian-Fueguian endemic Abrothrix lanosus (Rodentia: Sigmodontinae): phylogenetic position, karyotic and morphological data. Mammal Biol 75:122–137

    Google Scholar 

  • Fish FE (1996) Transitions from drag-based to lift-based propulsion in mammalian swimming. Amer Zool 36:628–641

    Article  Google Scholar 

  • Giannini NP (2003) Canonical Phylogenetic Ordination. Syst Biol 52:684–695

    Article  PubMed  Google Scholar 

  • Gingerich PD (2003) Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology 29:429–454

    Article  Google Scholar 

  • Hamrick MW (2001) Morphological diversity in digital skin microstructure of didelphid marsupials. J Anat 198:683–688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamrick MW (2003) Evolution and development of mammalian limb integumentary structures. J Exp Zool B 298:152–163

    Article  Google Scholar 

  • Hershkovitz P (1962) Evolution of Neotropical cricetine rodents (Muridae) with special reference to the phyllotine group. Fieldiana Zool 46:1–524

    Google Scholar 

  • Hildebrand M (1985) Digging of quadrupeds. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional Vertebrate Morphology. Harvard University Press, Cambridge, pp 90–108

    Chapter  Google Scholar 

  • Hopkins SSB, Davis EB (2009) Quantitative morphological proxies for fossoriality in small mammals. J Mammal 90:1449–1460

    Article  Google Scholar 

  • Howell AB (1930) Aquatic mammals. In: Charles C (ed) Their Adaptations to Life in the Water. Thomas Publishing, Springfield

  • Jayat JP, Ortiz PE, Salazar-Bravo J, Pardiñas UFJ, D’Elía G (2010) The Akodon boliviensis species group (Rodentia: Cricetidae: Sigmodontinae) in Argentina: species limits and distribution, with the description of a new entity. Zootaxa 2405:1–61

    Google Scholar 

  • Lagaria A, Youlatos D (2006) Anatomical correlates to scratch digging in the forelimb of european ground squirrels (Spermophilus citellus). J Mammal 83:583–570

    Google Scholar 

  • Lessa EP, Thaeler CS (1989) A reassessment of morphological specializations for digging in pocket gophers. J Mammal 70:689–700

    Article  Google Scholar 

  • Linde M, Palmer M, Gómez-Zurita J (2004) Differential correlates of diet and phylogeny on the shape of the premaxilla and anterior tooth in sparid fishes (Perciformes: Sparidae). J Evol Biol 17:941–952

    Article  CAS  PubMed  Google Scholar 

  • Lovejoy CO, Cohn MJ, White TD (1999) Morphological analysis of the mammalian postcranium: a developmental perspective. Proc Natl Acad Sci USA 96:13247–13252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lund PW (1840) Tillaegtilde to sidste Afhandlinger over Brasiliens Dyreverden for sidste Jordom vaeltning. Danske Vidensk Afhandl 8:273–296

    Google Scholar 

  • Luo Z-X, Ji Q, Yuan C-X (2007) Convergent dental evolution in pseudotribosphenic and tribosphenic mammals. Nature 450:93–97

  • Macleod N, Rose DK (1993) Inferring locomotor behavior in Paleogene mammals via eigen shape analysis. Am J Sci 293:300–355

    Article  Google Scholar 

  • Manly BFJ (1997) Randomization, Bootstrap and Monte Carlo Methods in Biology, 2nd ed. Chapman & Hall, London

    Google Scholar 

  • Mares MA, Braun JK, Coyner BS, Van Den Bussche RA (2008) Phylogenetic and biogeographic relationships of gerbil mice Eligmodontia (Rodentia, Cricetidae) in South America, with a description of a new species. Zootaxa 1753:1–33

    Google Scholar 

  • Mares MA, Ernest AK, Getting DD (1986) Small mammal community structure and composition in the Cerrado Province of central Brazil. J Trop Ecol 2:289–300

  • Martin RD (1984) Tree shrews. In: Macdonald D (ed) The Encyclopedia of Mammals. Facts on File, New York, pp 408–413

    Google Scholar 

  • Miller LM, Anderson S (1977) Bodily proportions of Uruguayan myomorph rodents. Am Mus Novitates 2615:1–10

    Google Scholar 

  • Myers P, Carleton MD (1981) The species of Oryzomys (Oligoryzomys) in Paraguay and the identity of Azara’s “Rat sixiemeou Rat a Tarse Noir.” Misc Publ Mus Zool Univ Michigan 161:1–41

    Google Scholar 

  • Nikolai JC, Bramble DM (1983) Morphological structure and function in desert heteromyid rodents. Great Basin Nat Mem 7:44–64

    Google Scholar 

  • Nowak RM (1999) Walker’s Mammals of the World, 6th ed. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Ojeda R, Tabeni S (2007) The mammals of the Monte desert revisited. J Arid Environ 73:173–181

    Article  Google Scholar 

  • Parada A, Pardiñas UFJ, Salazar-Bravo J, D’Elía, G, Palma ER (2013) Dating an impressive Neotropical radiation: molecular time estimates for the Sigmodontinae (Rodentia) provide insights into its historical biogeography. Mol Phylogen Evol 16:960–968

    Article  Google Scholar 

  • Pardiñas UFJ, JayatP, D’Elia G (2008) Reithrodon auritus. IUCN Red List of Threatened Species. Version 2014.3. www.iucnredlist.org. Accessed 30 June 2014

  • Patterson BD (1992) A new genus and species of long-clawed mouse (Rodentia: Muridae) from temperate rainforests of Chile. Zool J Linn Soc 106: 127–145

    Article  Google Scholar 

  • Polly PD (2007) Limbs in mammalian evolution. In: Hall BK (ed) Fins into Limbs. Evolution, Development, and Transformation. University of Chicago Press, Chicago, pp 265–268

    Google Scholar 

  • Reese AT, Lanier HC, Sargis EJ (2013) Skeletal indicators of ecological specialization in pika (Mammalia, Ochotonidae). J Morphol 274:585–602

    Article  PubMed  Google Scholar 

  • Revell LJ (2009) Size-correction and principal components for interspecific comparative studies. Evolution 63: 3258–3268

    Article  PubMed  Google Scholar 

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Rivas BA, D’Elia G, Linares O (2010) Diferenciación morfológica en Sigmodontinos (Rodentia: Cricetidae) de las Guayanas venezolanas con relación a su locomoción y hábitat. Mastozool Neotrop 17:97–109

    Google Scholar 

  • Rivera CP, Ittig Gonzalez RE, Rossi Fraire JS, Levis S, Gardenal C (2007) Molecular identification and phylogenetic relationships among the species of the genus Oligoryzomys (Rodentia: Cricetidae) present in Argentina, putative reservoirs of hantaviruses. Zool Scripta 36:231–239

    Article  Google Scholar 

  • Rodríguez-Serrano E, Palma RE, Hernández CE (2008) The evolution of ecomorphological traits within the Abrothrichini (Rodentia: Sigmodontine): a Bayesian phylogenetics approach. Mol Phylogen Evol 48:473–480

    Article  Google Scholar 

  • Salazar-Bravo J, Pardiñas UF, D’Elía G (2013) A phylogenetic appraisal of Sigmodontinae (Rodentia, Cricetidae) with emphasis on phyllotine genera: systematics and biogeography. Zool Scripta 42:250–261

    Article  Google Scholar 

  • Salton JA, Sargis EJ (2008) Evolutionary morphology of the Tenrecoidea (Mammalia) forelimb skeleton. In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology: A Tribute to Frederick S Szalay. Springer, Dordrecht, pp 361–372

    Google Scholar 

  • Samuels JX, Van Valkenburgh B (2008) Skeletal indicators of locomotor adaptations in living and extinct rodents. J Morphol 269:1387–1411

    Article  PubMed  Google Scholar 

  • Samuels JX, Meachen JA, Sakai SA (2013) Postcranial morphology and the locomotor habits of living and extinct carnivorans. J Morphol 274:121–146

    Article  PubMed  Google Scholar 

  • Santori TR, Viera VM, Rocha-Barbosa O, Magnan-Nieto, JA, Gobbi N (2008) Water absorption of the fur and swimming behavior of semiaquatic and terrestrial oryzomine rodents. J Mammal 5:1152–1161

    Article  Google Scholar 

  • Stein BR (2000) Morphology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life Underground: The Biology of Subterranean Rodents. University of Chicago Press, Chicago, pp 19–60

    Google Scholar 

  • Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53:533–553

    Article  PubMed  Google Scholar 

  • Steppan SJ, Ramirez O, Bandury J, Huchon D, Pacheco V, Walker L, Spotorno AE (2007) A molecular reappraisal of the systematics of the leaf-eared mice Phyllotis and their relatives. In: Kelt DA, Lessa EP, Salazar-Bravo J, Patton JL (eds) The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P. Pearson. Univ Calif Publ Zool 134:799–826

  • Sustaita D, Pouydebate E, Manzano A, Abdala V, Herrel F, Herrel A (2013) Getting a grip on tetrapod grasping: form, function, and evolution. Biol Rev 88:380–405

    Article  PubMed  Google Scholar 

  • Szalay FS, Sargis EJ (2001) Model-based analysis of postcranial osteology of marsupials of Palaeocene of Itabora (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas 23:139–302

    Google Scholar 

  • Taraborelli P, Corvalán V, Giannoni S (2003) Locomotion and scape models in the rodents of the Monte Desert (Argentina). Ethology 109:475–485

    Article  Google Scholar 

  • terBraak CJF (1995) Ordination. In: Jongman RHG, terBraak CJF, van Tongeren OFR (eds) Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, 91–144

  • Teta P, Jayat P, Ortiz P, D’Elía G (2013) The taxonomic status of Oligoryzomys brendae Massoia, 1998 (Rodentia, Cricetidae), with comments on the availability of this name. Zootaxa 3641:433–447

    Article  PubMed  Google Scholar 

  • Tulli MJ, Abdala V, Cruz FB (2011) Relationships among morphology, clinging performance and habitat use in Liolaemini lizards. J Evol Biol 24:843–855

    Article  CAS  PubMed  Google Scholar 

  • Tulli MJ, Cruz FB, Herrel A, Vanhooydonck B, Abdala V (2009) The interplay claw morphology and microhabitat use in neotropical iguanian lizards. Zoology 112:379–392

  • Vassallo AI (1998) Functional morphology, comparative behaviour, and adaptation in two sympatric subterranean rodents genus Ctenomys (Rodentia: Octodontidae). J Zool 244:415–427

    Article  Google Scholar 

  • Weksler M (2006) Phylogenetic relationships of oryzomyine rodents (Muroidea: Sigmodontinae): separate and combined analyses of morphological and molecular data. Bull Am Mus Nat Hist 296:1–149

    Article  Google Scholar 

  • Zani PA (2000) The comparative evolution of lizard claw and toe morphology and clinging performance. J Evol Biol 13:316–325

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical Analysis, 4th ed. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

We appreciate the comments of J. Brasca and V. Abdala on early versions of the manuscript. We thank to Diego Verzi, David Flores, and Ulyses Pardiñas for allowing access to mammal collections. Agustina Novillo, Agustina Ojeda, Mariano Sánchez, Pablo Jayat, and Pablo Teta are acknowledged for making the study of some additional specimens possible. Photographs were graciously provided by Antoine Baglan, Mariano Sánchez, Pablo Ortiz and Pablo Teta. This work was supported by grants BID-PICT 0616 and PIP 0284 (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Tulli.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online Resource 1

(DOC 35 kb)

Online Resource 2

(XLS 44 kb)

Online Resource 3

(XLS 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulli, M.J., Carrizo, L.V. & Samuels, J.X. Morphological Variation of the Forelimb and Claw in Neotropical Sigmodontine Rodents (Rodentia: Cricetidae). J Mammal Evol 23, 81–91 (2016). https://doi.org/10.1007/s10914-015-9300-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-015-9300-2

Keywords

Navigation