Skip to main content

Advertisement

Log in

Osteology and Functional Morphology of the Forelimb of the Marine Sloth Thalassocnus (Mammalia, Tardigrada)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Thalassocnus is a genus of “ground sloths” known from Neogene deposits, for the great majority of specimens, of the Pisco Formation (Peru). Five species are recognized, their description being currently restricted, for the most part, to the skull, mandible, and dentition. The bones of the forelimb are here described, and compared among the species of Thalassocnus and to other pilosans. The main characteristics of the forelimb of Thalassocnus relative to other sloths are the shortness of the humerus and radius, and the specialized digits. Moreover, the late species of the genus are characterized by the development of the pronator ridge of the radius, stoutness of the ulna, widening of the proximal carpal row, and shortening of the metacarpals. Analogies with extant tetrapods are proposed in order to infer plausible aquatic functions of the forelimb of Thalassocnus. In addition to paddling, it is argued that the forelimb of Thalassocnus was involved in bottom-walking, a function similarly found in extant sirenians. However, the function of the forelimb of Thalassocnus differs drastically from that of the latter, since it was likely involved in an activity related to obtaining food such as uprooting seagrass rhizomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47

Similar content being viewed by others

References

  • Amson E, Muizon C de (2014) A new durophagous phocid (Mammalia: Carnivora) from the late Neogene of Peru and considerations on monachine seals phylogeny. J Syst Palaeontol 12:523–548. doi: 10.1080/14772019.2013.799610

  • Amson E, Muizon C de, Laurin M, Argot C, Buffrénil V de (2014) Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proc R Soc B 281:20140192. doi: 10.1098/rspb.2014.0192

  • Amson E, Muizon C de, Domning DP, Argot C, Buffrénil V de (in press) Bone histology as a clue for resolving the puzzle of a dugong rib in the Pisco Formation, Peru. J Vertebr Paleontol

  • Argot C (2001) Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247:51–79. doi: 10.1002/1097-4687(200101)247:1<51::AID-JMOR1003>3.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  • Argot C (2008) Changing views in paleontology: the story of a giant (Megatherium, Xenarthra). In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology. Springer, Dordrecht, pp 37–50

    Chapter  Google Scholar 

  • Bargo MS, Vizcaíno SF (2008) Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45:175–196

    Google Scholar 

  • Bargo MS, Vizcaíno SF, Archuby FM, Blanco RE (2000) Limb bone proportions, strength and digging in some Lujanian (late Pleistocene-early Holocene) mylodontid ground sloths (Mammalia, Xenarthra). J Vertebr Paleontol 20:601–610

  • Barnes LG (2013) A new genus and species of late Miocene paleoparadoxiid (Mammalia, Desmostylia) from California. Contrib Sci 521:51–114

    Google Scholar 

  • Barone R (1966) Anatomie comparée des Mammifères domestiques, Tome 1, Ostéologie. Imprimerie des Beaux-Arts, Lyon

    Google Scholar 

  • Bianucci G, Sorbi S, Suárez ME, Landini W (2006) The southernmost sirenian record in the eastern Pacific Ocean, from the late Miocene of Chile. Comptes Rendus Palevol 5:945–952. doi: 10.1016/j.crpv.2006.06.001

    Article  Google Scholar 

  • Billet G, Germain D, Ruf I, Muizon C de, Hautier L (2013) The inner ear of Megatherium and the evolution of the vestibular system in sloths. J Anat 223:557–567. doi: 10.1111/joa.12114

  • Canto J, Salas-Gismondi R, Cozzuol M, Yáñez J (2008) The aquatic sloth Thalassocnus (Mammalia, Xenarthra) from the late Miocene of north-central Chile: biogeographic and ecological implications. J Vertebr Paleontol 28:918–922. doi: 10.1671/0272-4634(2008)28[918:TASTMX]2.0.CO;2

  • Cartelle C, Bohorquez GA (1982) Eremotherium laurillardi Lund 1842. Parte I. Deteminação específica e dimorfismo sexual. Iheringia, Séria Géologica, Porto Alegre 7:45–63

    Google Scholar 

  • Cartelle C, Fonseca JS (1983) Contribuição ao melhor conhecimento da pequena preguiça terrícola Nothrotherium maquinense (Lund) Lydekker, 1889. Lundiana 2:127–181

    Google Scholar 

  • Clementz MT, Sorbi S, Domning DP (2009) Evidence of Cenozoic environmental and ecological change from stable isotope analysis of sirenian remains from the Tethys-Mediterranean region. Geology 37:307–310. doi: 10.1130/G25533A.1

    Article  CAS  Google Scholar 

  • Coombs MC (1983) Large mammalian clawed herbivores: a comparative study. Trans Am Philos Soc New Ser 73:1–96

    Article  Google Scholar 

  • Cuenca Anaya J (1995) El Aparato Locomotor de los Escelidoterios (Edentata, Mammalia) y su Paleobiologia. Ajuntament de Valencia, Valencia

    Google Scholar 

  • Davis DD (1964) The giant panda: a morphological study of evolutionary mechanisms. Fieldiana Zool Mem 3:1–339

  • De Iuliis G (2003) Toward a morphofunctional understanding of the humerus of Megatheriinae: the identity and homology of some diaphyseal humeral features (Mammalia, Xenarthra, Megatheriidae). Senckenberg Biol 83:69–78

    Google Scholar 

  • De Iuliis G, Cartelle C (1994) The medial carpal and metacarpal elements of Eremotherium and Megatherium (Xenarthra: Mammalia). J Vertebr Paleontol 13:525–533

    Article  Google Scholar 

  • De Iuliis G, Cartelle C (1999) A new giant megatheriine ground sloth (Mammalia: Xenarthra: Megatheriidae) from the late Blancan to early Irvingtonian of Florida. Zool J Linn Soc 127:495–515

    Article  Google Scholar 

  • De Iuliis G, Gaudin TJ, Vicars MJ (2011) A new genus and species of nothrotheriid sloth (Xenarthra, Tardigrada, Nothrotheriidae) from the Late Miocene (Huayquerian) of Peru. Palaeontology 54:171–205. doi: 10.1111/j.1475-4983.2010.01001.x

    Article  Google Scholar 

  • Demaster DP, Stirling I (1981) Ursus maritimus. Mammal Species 145:1–7. doi: 10.2307/3503828

    Article  Google Scholar 

  • Domning DP (2001a) Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeogr Palaeoclimatol Palaeoecol 166:27–50. doi: 10.1016/S0031-0182(00)00200-5

    Article  Google Scholar 

  • Domning DP (2001b) Evolution of the Sirenia and Desmostylia. In: Mazin J, Buffrénil V de (eds) Secondary Adaptation of Tetrapods to Life Water. Verlag Dr Friedrich Pfeil, München, pp 151–168

  • Domning DP (2002) The terrestrial posture of desmostylians. Smithson Contrib Paleobiol 1959:99–111

    Google Scholar 

  • Domning DP, Beatty BL (2007) Use of tusks in feeding by dugongid sirenians: observations and tests of hypotheses. Anat Rec 290:523–38. doi: 10.1002/ar.20540

    Article  Google Scholar 

  • Ehret DJ, Macfadden BJ, Jones DS, DeVries TJ, Foster DA, Salas-Gismondi R (2012) Origin of the white shark Carcharodon (Lamniformes: Lamnidae) based on recalibration of the upper Neogene Pisco Formation of Peru. Palaeontology 55:1139–1153. doi: 10.1111/j.1475-4983.2012.01201.x

  • Elissamburu A, Vizcaíno SF (2004) Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). J Zool 262:145–159. doi: 10.1017/S0952836903004485

    Article  Google Scholar 

  • Esteban-Trivigno S, Mendoza M, De Renzi M (2008) Body mass estimation in Xenarthra: a predictive equation suitable for all quadrupedal terrestrial placentals? J Morphol 269:1276–93. doi: 10.1002/jmor.10659

  • Estes JA (1989) Adaptations for aquatic living by carnivores. In: Gittleman JL (ed) Carnivore Behavior, Ecology, and Evolution. Cornell University Press, Ithaca, pp 242–282

    Chapter  Google Scholar 

  • Fariña RA, Vizcaíno SF (2003) Slow moving or browsers? A note on nomenclature. Senckenberg Biol 83:3–4.

    Google Scholar 

  • Fariña RA, Vizcaíno SF, Bargo MS (1998) Body mass estimations in Lujanian (late Pleistocene-early Holocene of South America) mammal megafauna. Mastozoología Neotropical 5:87–108

  • Fish FE (2001) A mechanism for evolutionary transition in swimming mode by mammals. In: Mazin J-M, Buffrénil de V (eds) Secondary Adaptation of Tetrapods to Life in Water. Verlag Dr Friedrich Pfeil, München, pp 261–287

  • Fish FE, Baudinette RV, Frappell PB, Sarre MP (1997) Energetics of swimming by the platypus Ornithorhynchus anatinus: metabolic effort associated with rowing. J Exp Biol 200:2647–2652.

    CAS  PubMed  Google Scholar 

  • Fisher RE, Scott KM, Naples VL (2007) Forelimb myology of the pygmy hippopotamus (Choeropsis liberiensis). Anat Rec 290:673–93. doi: 10.1002/ar.20531

    Article  Google Scholar 

  • Fujiwara S (2009) Olecranon orientation as an indicator of elbow joint angle in the stance phase, and estimation of forelimb posture in extinct quadruped animals. J Morphol 270:1107–21. doi: 10.1002/jmor.10748

    Article  PubMed  Google Scholar 

  • Gambaryan PP (2002) Ways of adaptive changes in claws of digging mammals [abstract in English of article in Russian]. Zoologicheskii Zhurnal 81:978–990

    Google Scholar 

  • Gaudin TJ (2004) Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zool J Linn Soc 140:255–305. doi: 10.1111/j.1096-3642.2003.00100.x

    Article  Google Scholar 

  • Gaudin TJ, McDonald HG (2008) Morphology-based investigations of the phylogenetic relationships among extant and fossil xenarthrans. In: Vizcaino SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 24–36

    Google Scholar 

  • Gingerich PD (2003) Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology 29:429–454. doi: 10.1666/0094-8373(2003)029<0429:LTIEWE>2.0.CO;2

    Article  Google Scholar 

  • Gingerich PD (2005) Aquatic adaptation and swimming mode inferred from skeletal proportions in the Miocene desmostylian Desmostylus. J Mammal Evol 12:183–194. doi: 10.1007/s10914-005-5719-1

    Article  Google Scholar 

  • Hansen RM (1978) Shasta ground sloth food habits, Rampart Cave, Arizona. Paleobiology 4:302–319

    Google Scholar 

  • Hayashi S, Houssaye A, Nakajima Y, Chiba K, Ando T, Sawamura H, Inuzuka N, Kaneko N, Osaki T (2013) Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). PLoS One 8:e59146. doi: 10.1371/journal.pone.0059146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hildebrand M (1985) Digging of quadrupeds. In: Hildebrand M (ed) Functional Vertebrate Morphology. Cambridge University Press, Cambridge, pp 89–109

    Chapter  Google Scholar 

  • Hildebrand M (1988) Analysis of Vertebrate Structure. 3rd edn. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Hoffstetter R (1961) Description d’un squelette de Planops (Gravigrade du Miocène de Patagonie). Mammalia 25:1–96

    Article  Google Scholar 

  • Hoffstetter R (1968) Un gisement de vertébrés tertiaires à Sacaco (Sud-Pérou), témoin néogène d’une migration de faunes australes au long de la côte occidentale sud-américaine. Comptes rendus hebdomadaires des séances l’Académie des Sciences Série D 267:1273–1276

    Google Scholar 

  • Howell AB (1929) Contribution to the comparative anatomy of the eared and earless seals (genera Zalophus and Phoca). Proc US Natl Museum 73:1–142

    Article  Google Scholar 

  • Howell AB (1930) Aquatic Mammals: Their Adaptations to Life in the Water. Charles C. Thomas, Springfield

  • Husar SL (1978) Dugong dugon. Mammal Species 88:1–7

    Google Scholar 

  • Inuzuka N (2000) Aquatic adaptations in desmostylians. Hist Biol 14:97–113

    Article  Google Scholar 

  • Ivany LC, Portell RW, Jones DS (1990) Animal-plant relationships and paleobiogeography of an Eocene seagrass community from Florida. Palaios 5:244–258

    Article  Google Scholar 

  • Jenkins FA Jr (1974) The movement of the shoulder in claviculate and aclaviculate mammals. J Morphol 144:71–84

    Article  Google Scholar 

  • Ji Q, Luo Z-X, Yuan C-X, Tabrum AR (2006) A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311:1123–1127. doi: 10.1126/science.1123026

    Article  CAS  PubMed  Google Scholar 

  • Kley NJ, Kearney M (2007) Adaptations for digging and burrowing. In: Hall BK (ed) Fins into Limbs: Evolution, Development, and Transformation. University of Chicago Press, Chicago, pp 284–309

    Google Scholar 

  • Lambert O, Muizon C de (2013) A new long-snouted species of the Miocene pontoporiid dolphin Brachydelphis and a review of the Mio-Pliocene marine mammal levels in the Sacaco Basin, Peru. J Vertebr Paleontol 33:709–721

  • Lara-Ruiz P, Chiarello AG (2005) Life-history traits and sexual dimorphism of the Atlantic forest maned sloth Bradypus torquatus (Xenarthra: Bradypodidae). J Zool 267:63. doi: 10.1017/S0952836905007259

    Article  Google Scholar 

  • Lessertisseur J, Saban R (1967) Squelette appendiculaire. In: Grassé P-P (ed) Traité de Zoologie. Tome 16. Masson et Cie, Paris, pp 709–1076

  • Lull RS (1929) A remarkable ground sloth. Mem Peabody Mus Yale Univ 3:1–39. doi: 10.1002/asna.19292372003

    Google Scholar 

  • Maffucci F, Annona G, de Girolamo P, Bologna M A, Meomartino L, Montesano A, Bentivegna F, Hochscheid S (2013) Bone density in the loggerhead turtle: functional implications for stage specific aquatic habits. J Zool 291:243–248. doi: 10.1111/jzo.12060

    Article  Google Scholar 

  • Marshall CD, Maeda H, Iwata M, Furuta M, Asano S, Rosas F, Reep RL (2003) Orofacial morphology and feeding behaviour of the dugong, Amazonian, West African and Antillean manatees (Mammalia: Sirenia): functional morphology of the muscular-vibrissal complex. J Zool 259:245–260. doi: 10.1017/S0952836902003205

    Article  Google Scholar 

  • McDonald HG, Muizon C de (2002) The cranial anatomy of Thalassocnus (Xenarthra, Mammalia), a derived nothrothere from the Neogene of the Pisco Formation (Peru). J Vertebr Paleontol 22:349–365

  • Mendel FC (1985) Use of hands and feet of three-toed sloths (Bradypus variegatus) during climbing and terrestrial locomotion. J Mammal 66:359–366

    Article  Google Scholar 

  • Miller RA (1935) Functional adaptations in the forelimb of the sloths. J Mammal 16:38–51

    Article  Google Scholar 

  • Muizon C de, DeVries TJ (1985) Geology and paleontology of late Cenozoic marine deposits in the Sacaco area (Peru). Geol Rundschau 74:547–563

  • Muizon C de, Domning DP (1985) The first records of fossil sirenians in the southeastern Pacific Ocean. Bull Mus natl Hist nat Sec C, 4ème sér 7:189–213

  • Muizon C de, McDonald HG (1995) An aquatic sloth from the Pliocene of Peru. Nature 375:224–227. doi: 10.1038/375224a0

  • Muizon C de, McDonald HG, Salas R, Urbina M (2003) A new early species of the aquatic sloth Thalassocnus (Mammalia, Xenarthra) from the ate Miocene of Peru. J Vertebr Paleontol 23:886–894. doi: 10.1671/2361-13

  • Muizon C de, McDonald HG, Salas R, Urbina M (2004a) The youngest species of the aquatic sloth Thalassocnus and a reassessment of the relationships of the nothrothere sloths (Mammalia: Xenarthra). J Vertebr Paleontol 24:287–397. doi: 10.1671/2429a

  • Muizon C de, McDonald HG, Salas R, Urbina M (2004b) The evolution of feeding adaptations of the aquatic sloth Thalassocnus. J Vertebr Paleontol 24:398–410. doi: 10.1671/2429b

  • Nyakatura JA (2012) The convergent evolution of suspensory posture and locomotion in tree sloths. J Mammal Evol 19:225–234. doi: 10.1007/s10914-011-9174-x

    Article  Google Scholar 

  • Nyakatura JA, Fischer MS (2011) Functional morphology of the muscular sling at the pectoral girdle in tree sloths: convergent morphological solutions to new functional demands? J Anat 219:360–74. doi: 10.1111/j.1469-7580.2011.01394.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Osburn RC (1903) Adaptation to aquatic, arboreal, fossorial and cursorial habits in mammals. I. Aquatic adaptations. Am Nat 37:651–665

    Article  Google Scholar 

  • Owen R (1858) On the Megatherium (Megatherium americanum, Cuvier and Blumenbach). Part IV. Bones of the anterior extremities. Phil Trans R Soc London 148:261–278

    Article  Google Scholar 

  • Paula Couto C de (1974) The manus of Nothrotheriops shastense (Sinclair, 1905). Anais do XXVIII Congresso Brasileiro de Geologia 2:165–176

  • Pasitschniak-Arts M, Marinelli L (1998) Ornithorhynchus anatinus. Mammal Species 585:1–9

    Article  Google Scholar 

  • Polly PD (2007) Limbs in mammalian evolution. In: Hall BK (ed) Fins into Limbs: Evolution, Development, and Transformation. University of Chicago Press, Chicago, pp 245–268

    Google Scholar 

  • Pouchet G (1867) Mémoires sur le Grand Fourmilier. G. Masson, Paris

    Google Scholar 

  • Preen A (1996) Infaunal mining: a novel foraging method of loggerhead turtles. J Herpetol 30:94–96

    Article  Google Scholar 

  • Pujos F, De Iuliis G, Argot C, Werdelin L (2007) A peculiar climbing Megalonychidae from the Pleistocene of Peru and its implication for sloth history. Zool J Linn Soc 149:179–235

    Article  Google Scholar 

  • Pujos F, Gaudin TJ, De Iuliis G, Cartelle C (2012) Recent advances on variability, morpho-functional adaptations, dental terminology, and evolution of sloths. J Mammal Evol 19:159–169. doi: 10.1007/s10914-012-9189-y

    Article  Google Scholar 

  • Pyenson ND, Gutstein CS, Parham JF, Little H, Metallo A, Roux P Le, Carren C, Rossi V, Valenzuela-Toro AM, Velez-Juarbe J, Santelli CM, Rogers DR, Cozzuol MA, Suárez ME (2014) Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea. Proc R Soc B 281: 20133316. doi: 10.1098/rspb.2013.3316

  • Reidenberg JS (2007) Anatomical adaptations of aquatic mammals. Anat Rec 290:507–513. doi: 10.1002/ar.20541

    Article  Google Scholar 

  • Reinhardt J (1878) Kæmpedovendyr-Slægten Coelodon. Danske Videnskabernes Selskab Skrifter, Naturvidenskabelig og Mathematisk Afdeling Serie 5 12:255–349

  • Rose KD, Emry RJ (1993) Relationships of Xenarthra, Pholidota, and fossil “edentates”: the morphological evidence. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Placentals. Springer-Verlag, New York, pp 81–102

    Chapter  Google Scholar 

  • Salas R, Pujos F, Muizon C de (2005) Ossified meniscus and cyamo-fabella in some fossil sloths: a morpho-functional interpretation. Geobios 38:389–394. doi: 10.1016/j.geobios.2003.11.009

  • Scott WB (1903–1904) Mammalia of the Santa Cruz beds. Reports of the Princeton University Expedition to Patagonia, 1896–1899 5:1–490. doi: 10.1525/mua.2006.29.2.153

  • Shikama T (1966) Postcranial skeletons of Japanese Desmostylia: limb bones and sternum of Desmostylus and Paleoparadoxia, with considerations on their evolution. Palaeontol Soc Japan Spec Pap 12:202

    Google Scholar 

  • Smith JM, Savage RJG (1956) Some locomotory adaptations in mammals. Zool J Linn Soc 42:603–622

    Article  Google Scholar 

  • Stock C (1925) Cenozoic gravigrade edentates of western North America, with special reference to the Pleistocene Megalonychinae and Mylodontidae of Rancho La Brea. Carnegie Inst Wash Publ 331:1–206

    Google Scholar 

  • Taylor BK (1978) The anatomy of the forelimb in the anteater (Tamandua) and its functional implications. J Morphol 157:347–368

    Article  Google Scholar 

  • Thewissen JGM, Taylor MA (2007) Aquatic adaptations in the limbs of amniotes. In: Hall BK (ed) Fins into Limbs: Evolution, Development, and Transformation. University of Chicago Press, Chicago, pp 310–322

    Google Scholar 

  • Tito G, De Iuliis G (2003) Morphofunctional aspects and palaeobiology of the manus in the giant ground sloth Eremotherium Spillmann 1948. Senckenb Biol 83:79–94

    Google Scholar 

  • Toledo N, Bargo MS, Cassini GH, Vizcaíno SF (2012) The forelimb of early Miocene sloths (Mammalia, Xenarthra, Folivora): morphometrics and functional implications for substrate preferences. J Mammal Evol 19:185–198. doi: 10.1007/s10914-012-9185-2

    Article  Google Scholar 

  • Toledo N, Bargo MS, Vizcaíno SF (2013) Muscular reconstruction and functional morphology of the forelimb of early Miocene sloths (Xenarthra, Folivora) of Patagonia. Anat Rec 296:305–325. doi: 10.1002/ar.22627

    Article  Google Scholar 

  • Vélez-Juarbe J (2014) Ghost of seagrasses past: using sirenians as a proxy for historical distribution of seagrasses. Palaeogeogr Palaeoclimatol Palaeoecol 400:41–49. doi: 10.1016/j.palaeo.2013.05.012

    Article  Google Scholar 

  • Weckerly W (1998) Sexual-size dimorphism: influence of mass and mating systems in the most dimorphic mammals. J Mammal 79:33–52

  • Witmer LM (1995) The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason J (ed) Functional Morpholology Vertebrate Paleontology. Cambridge University Press, Cambridge, pp 19–33

    Google Scholar 

Download references

Acknowledgments

We are indebted to Rodolfo Salas-Gismondi (MUSM), Samuel McLeod and Vanessa Rhue (both LACM), Castor Cartelle (MCL), and Géraldine Veron (MNHN), who allowed access to the collections under their care. Rodolfo Salas-Gismondi (MUSM) and Mario Urbina (MUSM) are thanked for collecting numerous specimens of Thalassocnus. François Pujos (CCT-CONICET-Mendoza) and Rodolfo Salas-Gismondi (MUSM) are acknowledged for the assistance they brought regarding general xenarthrans questions. We thank Colas Bouillet (MNHN), Batz Le Dimet (MNHN), Philippe Richir (MNHN), and Renaud Vacant (CNRS) for preparing and/or helping prepare some of the fossils included in this study. Finally, Christian Lemzaouda and Philippe Loubry (CNRS) are thanked for taking some of the photographs that illustrate this publication. Finally, we thank the two anonymous reviewers and the editor, John Wible, for their numerous comments and suggestions that conspicuously improved the quality of both the content and form of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Amson.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online Resource 1

Specimen numbers of Thalassocnus forelimb material. Abbreviations: (R), right; (L), left; (R&L), right and left; (R or L), right or left (unknown laterality). (XLS 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amson, E., Argot, C., McDonald, H.G. et al. Osteology and Functional Morphology of the Forelimb of the Marine Sloth Thalassocnus (Mammalia, Tardigrada). J Mammal Evol 22, 169–242 (2015). https://doi.org/10.1007/s10914-014-9268-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-014-9268-3

Keywords

Navigation