Skip to main content

Advertisement

Log in

First Amphilestid from South America: A Molariform from the Jurassic Cañadón Asfalto Formation, Patagonia, Argentina

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

We report here the first amphilestid triconodont from the Jurassic of South America. The specimen, a single isolated molariform, was found at the Queso Rallado locality from where a growing mammalian fauna is known (including a triconodontid, two australosphenidans, and an as yet undescribed allotherian). The specimen, interpreted as a left lower tooth, presents five mesiodistally aligned, fairly symmetrical cusps, and is recognized as the type of a new taxon, Condorodon spanios. The phylogenetic analysis recovers Condorodon as a member of the clade Amphilestheria, closely related to Tendagurodon janenschi, an amphilestid triconodont from the Late Jurassic of Tanzania. Condorodon spanios is only distantly related to Argentoconodon fariasorum, the other triconodont known from Queso Rallado quarry. The phylogenetic position of Condorodon spanios points to the origin and diversification of amphilestherians during the Early Jurassic in a paleogeographical setting that allowed wide dispersion of these forms and argues, at least from the mammalian evidence, against a highly provincialized Pangaea. Some differences are however established between the filial western/eastern Gondwanan masses and their respective faunas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arias JS (2010) VIP: Vicariance Inference Program. Program, code, and documentation available at http://www.zmuc.dk/public/phylogeny/vip. Accessed September 23, 2011

  • Arias JS, Szumik CA, Goloboff PA (2011) Spatial analysis of vicariance: a method for using direct geographical information in historical biogeography. Cladistics 27: 1–12

    Article  Google Scholar 

  • Barrett PM, Hasegawa Y, Manabe M, Isaji S, Matsouka H (2002) Sauropod dinosaurs from the Lower Cretaceous of eastern Asia: taxonomic and biogeographical implications. Palaeontology 45: 1197–1217

    Article  Google Scholar 

  • Blainville HMD de (1838) Doutes sur le prétendu Didelphe de Stonesfield. CR Acad Sci 7: 402–418

    Google Scholar 

  • Cabaleri N, Volkheimer W, Silva Nieto D, Armella C, Cagnoni M, Hauser N, Matteini N, Pimentel MM (2010) U-Pb ages in zircons from Las Chacritas and Puesto Almada members of the Jurassic Cañadón Asfalto Formation, Chubut Province, Argentina. In: VII South American Symposium on Isotope Geology, Extended Abstracts; Brasilia, Brazil, 25–28 July 2010, pp 190–193

  • Chow M, Rich TH (1984) A new triconodontan (Mammalia) from the Jurassic of China. J Vertebr Paleontol 4: 226–231

    Article  Google Scholar 

  • Cifelli RL, Lipka TR, Schaff CR, Rowe TB (1999) First Early Cretaceous mammal from the eastern seaboard of the United States. J Vertebr Paleontol 19: 199–203

    Article  Google Scholar 

  • Cifelli RL, Madsen SK (1998) Triconodont mammals from the medial Cretaceous of Utah. J Vertebr Paleontol 18: 403–411

    Article  Google Scholar 

  • Cifelli RL, Wible JR, Jenkins FA Jr (1998) Triconodont mammals from the Cloverly Formation (Lower Cretaceous), Montana and Wyoming. J Vertebr Paleontol 18: 237–241

    Article  Google Scholar 

  • Crompton AW (1964) A preliminary description of a new mammal from the Upper Triassic of South Africa. Proc R Soc Lond 142: 441–452

    Google Scholar 

  • Crompton AW, Jenkins FA Jr (1968) Molar occlusion in Late Triassic mammals. Biol Rev 43: 427–458

    Article  PubMed  CAS  Google Scholar 

  • Cuneo R, Bowring S (2010) Dataciones geocronológicas preliminares en la Cuenca Cañadón Asfalto, Jurásico de Chubut, Argentina. Implicancias geológicas y paleontológicas. In: Actas X Congreso Argentino de Paleontología y Bioestratigrafía y VII Congreso Latinoamericano de Paleontología; La Plata, Argentina, 20–24 September 2010, p 153

  • Doré AG (1991) The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic. Palaeogeogr Palaeoclimatol Palaeoecol 87: 441–492

    Article  Google Scholar 

  • Dong Z-M (1992) Dinosaurs of China. China Ocean Press, Beijing, 188 pp

    Google Scholar 

  • DuToit AL (1937) Our Wandering Continents. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Engelmann GF, Callison, G (1998) Mammalian faunas of the Morrison Formation. Mod Geol 23: 343–379

    Google Scholar 

  • Ebach MC (2001) Extrapolating cladistic biogeography: a brief comment on van Veller et al. (1999, 2000, 2001). Cladistics 17: 383–388

    Article  Google Scholar 

  • Gaetano LC, Rougier GW (2011) New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny. J Vertebr Paleontol 31: 829–843

    Article  Google Scholar 

  • Gao C-L, Wilson GP, Luo Z-X, Murat Maga A, Meng Q, Wang X (2010) A new mammal skull from the Early Cretaceous of China with implications for the evolution of obtuse-angled molars and ‘amphilestid’ eutriconodonts. Proc R Soc Lond B Bio 276: 237–246

    Article  Google Scholar 

  • Godefroit P, Guo D-Y (1999) A new amphilestid mammal from the Early Cretaceous of China. Bull Inst R Sci Nat Belgique 69 (B suppl): 7–16

    Google Scholar 

  • Goloboff P, Farris J, Nixon K (2003) T.N.T.: Tree Analysis Using New Technology. Program and documentation available at www.zmuc.dk/public/phylogeny. Accessed August 26, 2009

  • Goloboff P, Farris J, Nixon K (2008) TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786

    Article  Google Scholar 

  • Golonka J, Bocharova NY (2000) Hot spot activity and the break-up of Pangea. Palaeogeogr Palaeoclimatol Palaeoecol 161: 49–69

    Article  Google Scholar 

  • Golonka J, Ross MI, Scotese CR (1994) Phanerozoic paleogeographic and paleoclimatic modeling maps. In: Embry AF, Beauchamp B, Glass DJ (eds) Pangea: Global Environments and Resources. Mem Can Soc Petrol Geol 17: 1–48

  • Hawkesworth CJ, Gallagher K, Kelley S, Mantovani M, Peate DW, Regelous M, Rogers NW (1992) Paraná magmatism and the opening of the South Atlantic. In: Storey BC, Alabaster T, Pankhurst RJ (eds.) Magmatism and the Causes of Continental Break-up. Geol Soc Lond Spec Publ 68: 221–240

  • Heinrich W-D (1998) Late Jurassic mammals from Tendaguru, Tanzania, East Africa. J Mammal Evol 5: 269–290

    Article  Google Scholar 

  • Hooker JJ, Lawson AG (2011) An ‘eutriconodontan’ mammal from the UK Cenomanian (Late Cretaceous). Spec Pap Palaeontol 86: 255–261

    Google Scholar 

  • Hovenkamp P (1997) Vicariance events, not areas, should be used in biogeographical analysis. Cladistics 13: 67–79

    Article  Google Scholar 

  • Hovenkamp P (2001) A direct method for the analysis of vicariance patterns. Cladistics 17: 260–265

    Article  Google Scholar 

  • Hu Y, Meng J, Wang Y-Q, Li C (2005) Large Mesozoic mammals fed on young dinosaurs. Nature 433: 149–152

    Article  PubMed  CAS  Google Scholar 

  • Hu Y-M, Wang Y-Q, Luo Z-X, Li C-K (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390: 137–142

    Article  PubMed  CAS  Google Scholar 

  • Hunn CA, Upchurch P (2001) The importance of time/space in diagnosing the causality of phylogenetic events: towards a ‘chronobiogeographical’ paradigm? Syst Biol 50: 1–17

    Google Scholar 

  • Jenkins FA Jr, Schaff CR (1988) The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. J Vertebr Paleontol 8: 1–24

    Article  Google Scholar 

  • Ji Q, Luo Z-X, Ji S-A (1999) A Chinese triconodont mammal and mosaic evolution of mammalian skeleton. Nature 398: 326–330

    Article  PubMed  CAS  Google Scholar 

  • Kermack DM, Kermack KA, Mussett F (1968) The Welsh pantothere Kuehneotherium praecursoris. J Linn Soc Zool 47: 407–423

    Article  Google Scholar 

  • Kermack KA, Mussett F, Rigney HW (1973) The lower jaw of Morganucodon. Zool J Linn Soc 53: 87–175

    Article  Google Scholar 

  • Kent RW (1991) Lithospheric uplift in eastern Gondwana: evidence for a long-lived mantle plume system? Geology 19: 19–23

    Article  Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs. Origins, Evolution, and Structure. Columbia University Press, New York

    Google Scholar 

  • Kielan-Jaworowska Z, Dashzeveg D (1998) Early Cretaceous amphilestid (“triconodont”) mammals from Mongolia. Acta Palaeontol Pol 43: 413–438

    Google Scholar 

  • Kretzoi M, Kretzoi M (2000) Fossilium Catalogus 1: Animalia Pars 137—Index Generum et Subgenerum Mammalium. Backhuys Publishers, Leiden

    Google Scholar 

  • Kühne WG (1949) On a triconodont tooth of a new pattern from a fissure-filling in South Glamorgan. Proc R Soc Lond 119: 345–350

    Google Scholar 

  • Kusuhashi N, Hu Y, Wang Y, Hirasawa S, Matsuoka H (2009) New triconodontids (Mammalia) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China. Geobios 42: 765–781

    Article  Google Scholar 

  • Lawver LA, Coffin MF, Gahagan LM (1992) The Mesozoic break-up of Gondwana. In: Plummer PS (ed) First Indian Ocean petroleum seminar, Proceedings of the Indian Ocean—First regional seminar on Petroleum Exploration, Seychelles, United Nations Department of Technical Co-operation for Development; 10–15 December 1990, pp 345–356

  • Lawver LA, Gahagan LM (1993) Subduction zones, magmatism, and the break-up of Pangea. In: Stone D, Runcorn SK (eds) Flow and Creep in the Solar System, NATO meeting/NATO ASI series, vol 139. Kluwer Academic, pp 225–247

  • Li J-L, Wang Y, Wang Y-Q, Li C-K (2000) A new family of primitive mammals from the Mesozoic of western Liaoning, China. Chinese Sci Bull 45: 2545–2549 [in Chinese]

    Google Scholar 

  • Lopatin AV, Maschenko EN, Averianov AO (2010) A new genus of triconodont mammals from the Early Cretaceous of western Siberia. Dokl Biol Sci 433: 282–285

    Article  PubMed  CAS  Google Scholar 

  • Luo Z-X, Chen P, Li G, Chen M (2007) A new eutriconodont mammal and evolutionary development in early mammals. Nature 446: 288–293

    Article  PubMed  CAS  Google Scholar 

  • Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47: 1–78

    Google Scholar 

  • Marsh OC (1879) Additional remains of Jurassic mammals. Am J Sci 18: 215–216

    Google Scholar 

  • Marsh OC (1887) American Jurassic mammals. Am J Sci 33: 326–348

    Google Scholar 

  • Martin T, Averianov AO (2007) A previously unrecognized group of Middle Jurassic triconodontan mammals from Central Asia. Naturwissenschaften 94: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Martin T, Averianov AO (2010) Mammals from the Middle Jurassic Balabansai Formation of the Fergana Depression, Kyrgyzstan. J Vertebr Paleontol 30: 855–871

    Article  Google Scholar 

  • McKenna MC (1975) Toward a phylogenetic classification of the Mammalia. In: Luckett WP, Szalay FS (eds) Phylogeny of the Primates. Plenum Press, New York, pp 21–46

    Chapter  Google Scholar 

  • Meng J, Hu YM, Wang Y-Q, Li C-K (2005) A new triconodont (Mammalia) from the Early Cretaceous Yixian Formation of Liaoning, China. Vertebr PalAsia 43: 1–10. [in Chinese]

    Google Scholar 

  • Meng J, Hu Y-M, Wang Y, Wang X, Li, C (2006) A Mesozoic gliding mammal from northeastern China. Nature 444: 889–893

    Article  PubMed  CAS  Google Scholar 

  • Meng J, Wang Y, Li C (2011) Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472: 181–185

    Article  PubMed  CAS  Google Scholar 

  • Mills JRE (1971) The dentition of Morganucodon. In: Kermack DM, Kermack KA (eds) Early Mammals. Zool J Linn Soc 50 suppl 1: 29–63

  • Milner AR, Norman DB (1984) The biogeography of advanced ornithopod dinosaurs (Archosauria: Ornithischia)—a cladistic-vicariance model. In: Reif W-E, Westphal F (eds) Third Symposium on Mesozoic Terrestrial; Ecosystems, Short Papers. Attempto Verlag, Tubingen, pp 145–150

    Google Scholar 

  • Montellano M, Hopson JA, Clark, JM (2008) Late Early Jurassic mammaliaforms from Huizachal Canyon, Tamaulipas, Mexico. J Vertebr Paleontol 28: 1130–1143

    Article  Google Scholar 

  • Nürnberger D, Müller RD (1991) The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics 191: 27–53

    Article  Google Scholar 

  • Owen R (1838) On the jaws of the Thylacotherium prevostii (Valenciennes) from Stonesfield. Proc Geol Soc Lond 3: 5–9

    Google Scholar 

  • Owen R (1854) On some fossil reptilian and mammalian remains from the Purbecks. Q J Geol Soc Lond 10: 420–433.

    Article  Google Scholar 

  • Owen R (1859) Palaeontology. Encyclopaedia Britannica 8th Edition, vol 17. Adam and Black, Edinburgh, pp 91–176

  • Owen R (1871) Monograph of the fossil Mammalia of the Mesozoic formations. Monogr Palaeontol Soc 33: 1–115

    Google Scholar 

  • Page RDM (1988) Quantitative cladistic biogeography: constructing and comparing area cladograms. Syst Zool 37: 254–270

    Article  Google Scholar 

  • Page RDM (1993) Genes, organisms, and areas: the problem of multiple lineages. Syst Biol 42: 77–84

    Google Scholar 

  • Page RDM (1994a) Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst Biol 43: 58–77

    Google Scholar 

  • Page RDM (1994b) Parallel phylogenies: reconstructing the history of host–parasite assemblages. Cladistics 10: 155–173

    Article  Google Scholar 

  • Page RDM (1995) TREEMAP for Windows, v. 1.0a. Program and documentation available at http://taxonomy.zoology.gla.ac.uk/rod/treemap.html. Accessed May 23, 2011

  • Patterson B (1951) Early Cretaceous mammals from northern Texas. Am J Sci 249: 31–46

    Article  Google Scholar 

  • Prasad GVR, Manhas BK (1997) A new symmetrodont mammal from the Lower Jurassic Kota Formation, Pranhita-Godavari Valley, India. Géobios 30: 563–572

    Article  Google Scholar 

  • Prasad GVR, Manhas BK (2002) Triconodont mammals from the Jurassic Kota Formation of India. Geodiversitas 24: 445–464

    Google Scholar 

  • Prothero DR (1981) New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bull Am Mus Nat Hist 167: 277–326

    Google Scholar 

  • Rauhut OWM, Martin T, Ortiz-Jaureguizar E, Puerta P (2002) A Jurassic mammal from South America. Nature 416: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Ricou L-E (1996) The plate tectonic history of the past Tethys Ocean. In: Nairn AEM, Ricou L-E, Vrielynck B, Dercourt J (eds) The Tethys Ocean. The Oceans Basins and Margins Vol. 8. Plenum Press, New York, pp 3–70

    Google Scholar 

  • Rougier GW, Garrido A, Gaetano LC, Puerta P, Corbitt C, Novacek MJ (2007c) First Jurassic triconodont from South America. Am Mus Novitates 3580: 1–17

    Article  Google Scholar 

  • Rougier GW, Isaji S, Manabe M (2007a) An Early Cretaceous mammal from the Kuwajima Formation (Tetori Group), Japan, and a reassessment of triconodont phylogeny. Ann Carnegie Mus 70: 73–115

    Article  Google Scholar 

  • Rougier GW, Martinelli AG, Forasiepi AM, Novacek, MJ (2007b) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Am Mus Novitates 3566: 1–54

    Article  Google Scholar 

  • Rougier GW, Novacek MJ, Dashzeveg D (1997) A new multituberculate from the Late Cretaceous locality Ukhaa Tolgod, Mongolia. Considerations on multituberculate relationships. Am Mus Novitates 3193: 1–26

    Google Scholar 

  • Rougier, GW, Novacek MJ, McKenna MC, Wible JR (2001) Gobiconodonts from the Early Cretaceous of Oshih (Ashile), Mongolia. Am Mus Novitates 3348: 1–30

    Article  Google Scholar 

  • Royer J-Y, Sandwell DT (1989) Evolution of the eastern Indian Ocean since the Late Cretaceous: constraints from GEOSAT altimetry. J Geophys Res 94: 13755–13782

    Article  Google Scholar 

  • Rowe TB (1988) Definition, diagnosis, and origin of Mammalia. J Vertebr Paleontol 8: 241–264

    Article  Google Scholar 

  • Russell DA (1993) The role of Central Asia in dinosaurian biogeography. Can J Earth Sci 30: 2002–2012

    Article  Google Scholar 

  • Russell DA (1995) China and the lost worlds of the dinosaurian era. Hist Biol 10: 3–12

    Article  Google Scholar 

  • Russell DA, Zheng Z (1993) A large mamenchisaurid from the Junggar Basin, Xinjiang, People’s Republic of China. Can J Earth Sci 30: 2082–2095

    Article  Google Scholar 

  • Scotese CR (2008) A continental drift flipbook. J Geol 112: 729–741

    Article  Google Scholar 

  • Sigogneau-Russell D (1983) A new therian mammal from the Rhaetic locality of Saint-Nicolas-de-Port (France). Zool J Linn Soc- 78: 175–186

    Article  Google Scholar 

  • Sigogneau-Russell D (1995) Two possibly aquatic triconodont mammals from the Early Cretaceous of Morocco. Acta Palaeontol Pol 40: 149–162

    Google Scholar 

  • Sigogneau-Russell D (2003) Diversity of triconodont mammals from the Early Cretaceous of North Africa—affinities of the amphilestids. Palaeovertebrata 32: 27–55

    Google Scholar 

  • Simpson GG (1925a) Mesozoic Mammalia. I. American triconodonts, part 1. Am J Sci 10: 145–165

    Article  Google Scholar 

  • Simpson GG (1925b) Mesozoic Mammalia. I. American triconodonts: part 2. Am J Sci 10: 334–358

    Article  Google Scholar 

  • Simpson GG (1925c) Mesozoic Mammalia. II. Tinodon and its allies. Am J Sci 10: 451–470

    Article  Google Scholar 

  • Simpson GG (1928) A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. Trustees of the British Museum, London, 215 pp

    Google Scholar 

  • Simpson GG (1929) American Mesozoic Mammalia. Mem Peabody Mus Yale Univ 3: 1–235

    Google Scholar 

  • Trofimov BA (1978) The first triconodonts (Mammalia, Triconodonta) from Mongolia. Dokl Akad Nauk SSSR 243: 213–216 [in Russian]

    Google Scholar 

  • Upchurch P (1995) Evolutionary history of sauropod dinosaurs. Philos Trans R Soc B 349: 365–390

    Article  Google Scholar 

  • Upchurch P, Hunn CA, Norman DB (2002) An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events. Proc R Soc Lond B 269: 613–621

    Article  Google Scholar 

  • Van Veller MGP, Kornet DJ, Zandee M (2002) A posteriori and a priori methodologies for testing hypotheses of causal processes in vicariance biogeography. Cladistics 18: 207–217

    Article  Google Scholar 

  • Van Veller MGP, Zandee M, Kornet DJ (1999) Two requirements for obtaining valid common patterns under different assumptions in vicariance biogeography. Cladistics 15: 393–406

    Article  Google Scholar 

  • Van Veller MGP, Zandee M, Kornet DJ (2000) Methods in vicariance biogeography: Assessment of the implementations of assumptions 0, 1 and 2. Cladistics 16: 319–345

    Article  Google Scholar 

  • Van Veller MGP, Zandee M, Kornet DJ (2001) Measures for obtaining inclusive solution sets under assumptions zero, 1 and 2 with different methods for vicariance biogeography. Cladistics 17: 248–259

    Article  Google Scholar 

  • Wilson JA, Upchurch P (2010) Redescription and reassessment of the phylogenetic affinities of Euhelopus zdanskyi (Dinosauria: Sauropoda) from the Early Cretaceous of China. Palaeontology 7: 199–239

    Google Scholar 

  • Wilson M (1992) Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of Lower Cretaceous super-plume activity? In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the Causes of Continental Break-up. Geol Soc Lond Spec Publ 68: 241–155

  • Zhou M-Z, Cheng Z-W, Wang Y-Q (1991) A mammalian lower jaw from the Jurassic of Lingyuan, Liaoning. Vertebr PalAsia 29: 165–175

    Google Scholar 

  • Ziegler PA (1988) Evolution of the Arctic-North Atlantic and the western Tethys. Am Assoc Petrol Geol Mem 43: 198 pp, 30 plates

Download references

Acknowledgments

This project has been funded by NSF DEB 0946430, DEB 1068089 (to G.W.R.), Agencia de Promoción Científica y Tecnológica (PICT 2006–01756), CONICET (Beca de Postgrado de Tipo I and II to L.C.G.), and a DFG travel grant to L.C.G.

The Secretaría de Cultura del Chubut, the Museo Paleontológico “Egidio Feruglio”, the Escuela Rural No. 31, and the Farias family as well as many researchers, students, and technicians have been crucial for the success of our field work.

Leandro Canessa is deeply thanked for the quick and superb preparation of the specimen presented here and almost life-long field support.

Dr. Mancuso, Dr. F. Abdala, and Dr. D. Pol are thanked for valuable suggestions in early stages of this manuscript. The editor and the reviewers are thanked for their valuable comments and help.

Access to comparative material was allowed by Dr. D. Brinkman, Dr. M. Carrano, Dr. J. Cundiff, Dr. J. Hooker, Dr. P. Jeffery, Dr. F. Jenkins Jr., Dr. A. Kramarz, Dr. P. Makovicky, Dr. J. Meng, Dr. C. Norris, Dr. M. Richter, Dr. E. Ruigomez, and Dr. W. Simpson.

Version 1.1 of TNT was freely granted through the sponsorship of the Willi Henning Society.

This is LCG’s contribution R-55 of the Instituto de Estudios Andinos Don Pablo Groeber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo W. Rougier.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 5416 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaetano, L.C., Rougier, G.W. First Amphilestid from South America: A Molariform from the Jurassic Cañadón Asfalto Formation, Patagonia, Argentina. J Mammal Evol 19, 235–248 (2012). https://doi.org/10.1007/s10914-012-9194-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-012-9194-1

Keywords

Navigation