Skip to main content

Advertisement

Log in

Proteoglycans: Potential Agents in Mammographic Density and the Associated Breast Cancer Risk

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Although increased mammographic density (MD) has been well established as a marker for increased breast cancer (BC) risk, its pathobiology is far from understood. Altered proteoglycan (PG) composition may underpin the physical properties of MD, and may contribute to the associated increase in BC risk. Numerous studies have investigated PGs, which are a major stromal matrix component, in relation to MD and BC and reported results that are sometimes discordant. Our review summarises these results and highlights discrepancies between PG associations with BC and MD, thus serving as a guide for identifying PGs that warrant further research towards developing chemo-preventive or therapeutic agents targeting pre-invasive or invasive breast lesions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.

    Article  PubMed  Google Scholar 

  2. Australia BCN. Current Statistics in Australian Breast Cancer. n.p., n.d. Web. Jan. 2015.

  3. Yaghjyan L, Colditz GA, Rosner B, Tamimi RM. Mammographic breast density and breast cancer risk: interactions of percent density, absolute dense, and non-dense areas with breast cancer risk factors. Breast Cancer Res Treat. 2015:1–9.

  4. Mirette H, Caroline D. Is mammographic density a biomarker to study the molecular causes of breast cancer? INTECH Open Access Publisher; 2012.

  5. Huo CW, Chew GL, Britt KL, Ingman WV, Henderson MA, Hopper JL, et al. Mammographic density-a review on the current understanding of its association with breast cancer. Breast Cancer Res Treat. 2014;144(3):479–502.

    Article  CAS  PubMed  Google Scholar 

  6. Britt K, Ingman W, Huo C, Chew G, Thompson E. The pathobiology of mammographic density. J Cancer Biol Res. 2014;2(1):1021.

    Google Scholar 

  7. Acerbi I, Au A, Chen Y-Y, Hwang S, Weaver V. P2-10-01: extracellular matrix stiffness and mammographic density in the human breast. Cancer Res. 2011;71(24 Supplement):P2-10-01.

    Article  Google Scholar 

  8. Provenzano PP, Inman DR, Eliceiri KW, Keely PJ. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene. 2009;28(49):4326–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54.

    Article  CAS  PubMed  Google Scholar 

  10. Oskarsson T. Extracellular matrix components in breast cancer progression and metastasis. Breast. 2013;22:S66–72.

    Article  PubMed  Google Scholar 

  11. Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, et al. The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(2):343–9.

    Article  PubMed  Google Scholar 

  12. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9(2):108–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lyons TR, O’Brien J, Borges V, Conklin MW, Keely PJ, Eliceiri KW, et al. Postpartum mammary gland involution drives DCIS progression through collagen and COX-2. Nat Med. 2011;17(9):1109–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Maller O, Hansen KC, Lyons TR, Acerbi I, Weaver VM, Prekeris R, et al. Collagen architecture in pregnancy-induced protection from breast cancer. J Cell Sci. 2013;126(Pt 18):4108–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15(6):677–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Karousou E, D’Angelo ML, Kouvidi K, Vigetti D, Viola M, Nikitovic D, et al. Collagen VI and hyaluronan: the common role in breast cancer. Biomed Res Int. 2014;2014:10.

    Article  CAS  Google Scholar 

  19. Stoeckelhuber M, Stumpf P, Hoefter EA, Welsch U. Proteoglycan-collagen associations in the non-lactating human breast connective tissue during the menstrual cycle. Histochem Cell Biol. 2002;118(3):221–30.

    CAS  PubMed  Google Scholar 

  20. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Theocharis AD, Skandalis SS, Neill T, Multhaupt HAB, Hubo M, Frey H, et al. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim Biophys Acta. 2015;1855(2):276–300.

    CAS  PubMed  Google Scholar 

  22. Choi S, Kang DH, Oh ES. Targeting syndecans: a promising strategy for the treatment of cancer. Expert Opin Ther Targets. 2013;17(6):695–705.

    Article  CAS  PubMed  Google Scholar 

  23. Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 2010;277(19):3904–23.

    Article  CAS  PubMed  Google Scholar 

  24. Goldoni S, Seidler DG, Heath J, Fassan M, Baffa R, Thakur ML, et al. An antimetastatic role for decorin in breast cancer. Am J Pathol. 2008;173(3):844–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Schaefer L, Schaefer R. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010;339(1):237–46.

    Article  CAS  PubMed  Google Scholar 

  26. Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67(1):609–52.

    Article  CAS  PubMed  Google Scholar 

  27. Pérez S, Sarkar A, Rivet A, Breton C, Imberty A. Glyco3D: a portal for structural glycosciences. In: Lütteke T, Frank M, editors. Glycoinformatics. New York: Springer; 2015. p. 241–58.

    Google Scholar 

  28. Uchimura K. Keratan sulfate: biosynthesis, structures, and biological functions. In: Balagurunathan K, Nakato H, Desai UR, editors. Glycosaminoglycans. New York: Springer; 2015. p. 389–400.

    Google Scholar 

  29. Anower EKMF, Kimata K. Human blood glycosaminoglycans: isolation and analysis. Methods Mol Biol. 2015;1229:95–103.

    Article  Google Scholar 

  30. Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015(0).

  31. Sainio A, Järveläinen H. extracellular matrix macromolecules in tumour microenvironment with special reference to desmoplastic reaction and the role of matrix proteoglycans and hyaluronan. J Carcinogene Mutagene S. 2013;13.

  32. Maller O, Martinson H, Schedin P. Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia. 2010;15(3):301–18.

    Article  PubMed  Google Scholar 

  33. Leygue E, Snell L, Dotzlaw H, Troup S, Hiller-Hitchcock T, Murphy LC, et al. Lumican and decorin are differentially expressed in human breast carcinoma. J Pathol. 2000;192(3):313–20.

    Article  CAS  PubMed  Google Scholar 

  34. Stamov DR, Muller A, Wegrowski Y, Brezillon S, Franz CM. Quantitative analysis of type I collagen fibril regulation by lumican and decorin using AFM. J Struct Biol. 2013;183(3):394–403.

    Article  CAS  PubMed  Google Scholar 

  35. Brézillon S, Pietraszek K, Maquart FX, Wegrowski Y. Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins. FEBS J. 2013;280(10):2369–81.

    Article  PubMed  CAS  Google Scholar 

  36. Naito Z. Role of the small leucine-rich proteoglycan (SLRP) family in pathological lesions and cancer cell growth. J Nippon Med Sch. 2005;72(3):137–45.

    Article  CAS  PubMed  Google Scholar 

  37. Ishiwata T, Cho K, Kawahara K, Yamamoto T, Fujiwara Y, Uchida E, et al. Role of lumican in cancer cells and adjacent stromal tissues in human pancreatic cancer. Oncol Rep. 2007;18(3):537–43.

    CAS  PubMed  Google Scholar 

  38. Sharma B, Ramus MD, Kirkwood CT, Sperry EE, Chu PH, Kao WW, et al. Lumican exhibits anti-angiogenic activity in a context specific manner. Cancer Microenviron. 2013;6(3):263–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Somiari RI, Sullivan A, Russell S, Somiari S, Hu H, Jordan R, et al. High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics. 2003;3(10):1863–73.

    Article  CAS  PubMed  Google Scholar 

  40. Eshchenko TY, Rykova VI, Chernakov AE, Sidorov SV, Grigorieva EV. Expression of different proteoglycans in human breast tumors. Biochemistry (Mosc). 2007;72(9):1016–20.

    Article  CAS  Google Scholar 

  41. Leygue E, Snell L, Dotzlaw H, Hole K, Hiller-Hitchcock T, Roughley PJ, et al. Expression of lumican in human breast carcinoma. Cancer Res. 1998;58(7):1348–52.

    CAS  PubMed  Google Scholar 

  42. Troup S, Njue C, Kliewer EV, Parisien M, Roskelley C, Chakravarti S, et al. Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin Cancer Res. 2003;9(1):207–14.

    CAS  PubMed  Google Scholar 

  43. Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH. Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res. 2003;5(5):R129–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Neame* PJ, Kay CJ, McQuillan DJ, Beales MP, Hassell JR. Independent modulation of collagen fibrillogenesis by decorin and lumican. Cell Mol Life Sci CMLS. 2000;57(5):859–63.

    Article  CAS  PubMed  Google Scholar 

  45. Huo CW, Chew G, Hill P, Huang D, Ingman W, Hodson L, et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res BCR. 2015;17(1):79.

    Article  PubMed  Google Scholar 

  46. Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature. 1990;346(6281):281–4.

    Article  CAS  PubMed  Google Scholar 

  47. Grant DS, Yenisey C, Rose RW, Tootell M, Santra M, Iozzo RV. Decorin suppresses tumor cell-mediated angiogenesis. Oncogene. 2002;21(31):4765–77.

    Article  CAS  PubMed  Google Scholar 

  48. Goldoni S, Iozzo RV. Tumor microenvironment: modulation by decorin and related molecules harboring leucine-rich tandem motifs. Int J Cancer. 2008;123(11):2473–9.

    Article  CAS  PubMed  Google Scholar 

  49. Oda G, Sato T, Ishikawa T, Kawachi H, Nakagawa T, Kuwayama T, et al. Significance of stromal decorin expression during the progression of breast cancer. Oncol Rep. 2012;28(6):2003–8.

    PubMed  Google Scholar 

  50. Skandalis SS, Labropoulou VT, Ravazoula P, Likaki-Karatza E, Dobra K, Kalofonos HP, et al. Versican but not decorin accumulation is related to malignancy in mammographically detected high density and malignant-appearing microcalcifications in non-palpable breast carcinomas. BMC Cancer. 2011;11(1):314.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Hallberg G, Andersson E, Naessén T, Ordeberg GE. Research the expression of syndecan-1, syndecan-4 and decorin in healthy human breast tissue during the menstrual cycle. Reprod Biol Endocrinol. 2010.

  52. Ursin G, Parisky YR, Pike MC, Spicer DV. Mammographic density changes during the menstrual cycle. Cancer Epidemiol Biomarkers Prev. 2001;10(2):141–2.

    CAS  PubMed  Google Scholar 

  53. Buist DSM, Aiello EJ, Miglioretti DL, White E. Mammographic breast density, dense area, and breast area differences by phase in the menstrual cycle. Cancer Epidemiol Biomarkers Prev. 2006;15(11):2303–6.

    Article  PubMed  Google Scholar 

  54. Neill T, Schaefer L, Iozzo RV. Decorin: a guardian from the matrix. Am J Pathol. 2012;181(2):380–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Wadhwa S, Embree MC, Bi Y, Young MF. Regulation, regulatory activities, and function of biglycan. Crit Rev Eukaryot Gene Expr. 2004;14(4):301–15.

    Article  CAS  PubMed  Google Scholar 

  56. Sainio A, Järveläinen H. Extracellular matrix macromolecules: potential tools and targets in cancer gene therapy. Mol Cell Ther. 2014;2(1):14.

    Article  PubMed Central  PubMed  Google Scholar 

  57. La Creis RK, Rogers EN, Yeyeodu ST, Jones DZ, Kimbro KS. Contribution of toll-like receptor signaling pathways to breast tumorigenesis and treatment. Breast Cancer. 2013;5:43.

    Google Scholar 

  58. González-Reyes S, Marín L, González L, González LO, del Casar JM, Lamelas ML, et al. Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis. BMC Cancer. 2010;10(1):665.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Yang H, Wang B, Wang T, Xu L, He C, Wen H, et al. Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis. PLoS ONE. 2014;9(10):e109980.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Van Bockstal M, Lambein K, Van Gele M, De Vlieghere E, Limame R, Braems G, et al. Differential regulation of extracellular matrix protein expression in carcinoma-associated fibroblasts by TGF-β1 regulates cancer cell spreading but not adhesion. Oncoscience. 2014;1(10):634.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Recktenwald CV, Leisz S, Steven A, Mimura K, Müller A, Wulfänger J, et al. HER-2/neu-mediated down-regulation of biglycan associated with altered growth properties. J Biol Chem. 2012;287(29):24320–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Esses G, Margolies L, Jaffer S, Esses S, Sonnenblick E, Szabo J. Breast density and its correlation with invasive breast cancer prognostic indicators. Research. 2014;1:1019.

    Google Scholar 

  63. Lope V, Pérez-Gómez B, Sánchez-Contador C, Santamariña M, Moreo P, Vidal C, et al. Obstetric history and mammographic density: a population-based cross-sectional study in Spain (DDM-Spain). Breast Cancer Res Treat. 2012;132(3):1137–46.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ. Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1998;7(12):1133–44.

    CAS  PubMed  Google Scholar 

  65. Martin LJ, Boyd NF. Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res. 2008;10(1):201.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Chew GL, Huang D, Huo CW, Blick T, Hill P, Cawson J, et al. Dynamic changes in high and low mammographic density human breast tissues maintained in murine tissue engineering chambers during various murine peripartum states and over time. Breast Cancer Res Treat. 2013;140(2):285–97.

    Article  CAS  PubMed  Google Scholar 

  67. Iozzo RV, Murdoch AD. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 1996;10(5):598–614.

    CAS  PubMed  Google Scholar 

  68. Wight TN. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 2002;14(5):617–23.

    Article  CAS  PubMed  Google Scholar 

  69. Sotoodehnejadnematalahi F, Burke B. Structure, function and regulation of versican: the most abundant type of proteoglycan in the extracellular matrix. Acta Med Iran. 2013;51(11):740–50.

    CAS  PubMed  Google Scholar 

  70. Nikitovic D, Kouvidi K, Voudouri K, Berdiaki A, Karousou E, Passi A, et al. The motile breast cancer phenotype roles of proteoglycans/glycosaminoglycans. BioMed Res Int. 2014;2014.

  71. Nara Y, Kato Y, Torii Y, Tsuji Y, Nakagaki S, Goto S, et al. Immunohistochemical localization of extracellular matrix components in human breast tumours with special reference to PG-M/versican. Histochem J. 1997;29(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  72. Du WW, Fang L, Yang X, Sheng W, Yang BL, Seth A, et al. The role of versican in modulating breast cancer cell self-renewal. Mol Cancer Res. 2013;11(5):443–55.

    Article  CAS  PubMed  Google Scholar 

  73. Du WW, Yang B, Seth A, Yee A. Versican G3 domain enhances breast cancer cell invasion and bone metastasis. J Bone Joint Surg (Br). 2012;94-B(SUPP XXXVIII):38.

    Google Scholar 

  74. Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ. The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev. 2009;28(1-2):233–45.

    Article  PubMed  Google Scholar 

  75. Ricciardelli C, Brooks JH, Suwiwat S, Sakko AJ, Mayne K, Raymond WA, et al. Regulation of stromal versican expression by breast cancer cells and importance to relapse-free survival in patients with node-negative primary breast cancer. Clin Cancer Res. 2002;8(4):1054–60.

    PubMed  Google Scholar 

  76. Pinheiro MC, Mora OA, Caldini EG, Battlehner CN, Joazeiro PP, Toledo OM. Ultrastructural, immunohistochemical and biochemical analysis of glycosaminoglycans and proteoglycans in the mouse pubic symphysis during pregnancy. Cell Biol Int. 2005;29(6):458–71.

    Article  CAS  PubMed  Google Scholar 

  77. Kuhl H, Schneider H. Progesterone-promoter or inhibitor of breast cancer. Climacteric. 2013;16(S1):54–68.

    Article  CAS  PubMed  Google Scholar 

  78. Blackmore KM, Knight JA, Walter J, Lilge L. The association between breast tissue optical content and mammographic density in pre- and post-menopausal women. PLoS ONE. 2015;10(1):e0115851.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Meier-Abt F, Brinkhaus H, Bentires-Alj M. Early but not late pregnancy induces lifelong reductions in the proportion of mammary progesterone sensing cells and epithelial Wnt signaling. AGE. 2014;10(20):30.

    Google Scholar 

  80. Kusafuka K, Muramatsu K, Kasami M, Kuriki K, Hirobe K, Hayashi I, et al. Cartilaginous features in matrix-producing carcinoma of the breast: four cases report with histochemical and immunohistochemical analysis of matrix molecules. Mod Pathol. 2008;21(10):1282–92.

    Article  CAS  PubMed  Google Scholar 

  81. Yan D, Yan X-F, Chang X-T. Expression of ADAMTS-4 and its product ARGxx in breast cancer [J]. Shandong Med J. 2011;22:017.

    Google Scholar 

  82. Murdoch AD, Liu B, Schwarting R, Tuan RS, Iozzo RV. Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem. 1994;42(2):239–49.

    Article  CAS  PubMed  Google Scholar 

  83. Mongiat M, Otto J, Oldershaw R, Ferrer F, Sato JD, Iozzo RV. Fibroblast growth factor-binding protein is a novel partner for perlecan protein core. J Biol Chem. 2001;276(13):10263–71.

    Article  CAS  PubMed  Google Scholar 

  84. Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest. 2001;108(3):349–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Clarke DN, Al Ahmad A, Lee B, Parham C, Auckland L, Fertala A, et al. Perlecan domain V induces VEGf secretion in brain endothelial cells through integrin α(5)β(1) and ERK-dependent signaling pathways. PLoS ONE. 2012;7(9):e45257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Ishijima M, Suzuki N, Hozumi K, Matsunobu T, Kosaki K, Kaneko H, et al. Perlecan modulates VEGF signaling and is essential for vascularization in endochondral bone formation. Matrix Biol. 2012;31(4):234–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Goyal A, Pal N, Concannon M, Paul M, Doran M, Poluzzi C, et al. Endorepellin, the angiostatic module of perlecan, interacts with both the alpha2beta1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2): a dual receptor antagonism. J Biol Chem. 2011;286(29):25947–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem. 2003;278(6):4238–49.

    Article  CAS  PubMed  Google Scholar 

  89. Poluzzi C, Casulli J, Goyal A, Mercer TJ, Neill T, Iozzo RV. Endorepellin evokes autophagy in endothelial cells. J Biol Chem. 2014;289(23):16114–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Goyal A, Poluzzi C, Willis CD, Smythies J, Shellard A, Neill T, et al. Endorepellin affects angiogenesis by antagonizing diverse vascular endothelial growth factor receptor 2 (VEGFR2)-evoked signaling pathways: transcriptional repression of hypoxia-inducible factor 1α and VEGFA and concurrent inhibition of nuclear factor of activated T cell 1 (NFAT1) activation. J Biol Chem. 2012;287(52):43543–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Woodall BP, Nyström A, Iozzo RA, Eble JA, Niland S, Krieg T, et al. Integrin α2β1 is the required receptor for endorepellin angiostatic activity. J Biol Chem. 2008;283(4):2335–43.

    Article  CAS  PubMed  Google Scholar 

  92. Bix G, Fu J, Gonzalez EM, Macro L, Barker A, Campbell S, et al. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through α2β1 integrin. J Cell Biol. 2004;166(1):97–109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Willis CD, Poluzzi C, Mongiat M, Iozzo RV. Endorepellin LG1/2 domains bind Ig3-5 of VEGFR2 and block proangiogenic signaling by VEGFA in endothelial cells. FEBS J. 2013;280(10):2271–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Lee B, Clarke D, Al Ahmad A, Kahle M, Parham C, Auckland L, et al. Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents. J Clin Invest. 2011;121(8):3005–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Lord MS, Jung M, Cheng B, Whitelock JM. Transcriptional complexity of the HSPG2 gene in the human mast cell line, HMC-1. Matrix Biol. 2014;35:123–31.

    Article  CAS  PubMed  Google Scholar 

  96. Bix G, Iozzo RV. Novel interactions of perlecan: unraveling perlecan’s role in angiogenesis. Microsc Res Tech. 2008;71(5):339–48.

    Article  CAS  PubMed  Google Scholar 

  97. Nerlich A, Wiest I, Wagner E, Sauer U, Schleicher E. Gene expression and protein deposition of major basement membrane components and TGF-beta 1 in human breast cancer. Anticancer Res. 1996;17(6D):4443–9.

    Google Scholar 

  98. Nerlich A, Lebeau A, Hagedorn H, Sauer U, Schleicher E. Morphological aspects of altered basement membrane metabolism in invasive carcinomas of the breast and the larynx. Anticancer Res. 1997;18(5A):3515–20.

    Google Scholar 

  99. Iozzo RV, Cohen IR, Grässel S, Murdoch AD. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J. 1994;302(Pt 3):625.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Jansson M, Ohlund D, Sund M. 190. Expression and circulating levels of perlecan in breast cancer. Eur J Surg Oncol. 2014;40(11):S81.

    Article  Google Scholar 

  101. Chang JW, Kang UB, Kim DH, Yi JK, Lee JW, Noh DY, et al. Identification of circulating endorepellin LG3 fragment: potential use as a serological biomarker for breast cancer. Proteomics Clin Appl. 2008;2(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  102. Lisanti MP, Tsirigos A, Pavlides S, Reeves KJ, Peiris-Pages M, Chadwick AL, et al. JNK1 stress signaling is hyper-activated in high breast density and the tumor stroma: connecting fibrosis, inflammation, and stemness for cancer prevention. Cell Cycle. 2014;13(4):580–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Teng YH, Aquino RS, Park PW. Molecular functions of syndecan-1 in disease. Matrix Biol. 2012;31(1):3–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Ramani VC, Pruett PS, Thompson CA, DeLucas LD, Sanderson RD. Heparan sulfate chains of syndecan-1 regulate ectodomain shedding. J Biol Chem. 2012;287(13):9952–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Manon-Jensen T, Itoh Y, Couchman JR. Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J. 2010;277(19):3876–89.

    Article  CAS  PubMed  Google Scholar 

  106. Lendorf ME, Manon-Jensen T, Kronqvist P, Multhaupt HAB, Couchman JR. Syndecan-1 and syndecan-4 are independent indicators in breast carcinoma. J Histochem Cytochem. 2011;59(6):615–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Lofgren L, Sahlin L, Jiang S, Von Schoultz B, Fernstad R, Skoog L, et al. Expression of syndecan-1 in paired samples of normal and malignant breast tissue from postmenopausal women. Anticancer Res. 2007;27(5A):3045–50.

    CAS  PubMed  Google Scholar 

  108. Baba F, Swartz K, van Buren R, Eickhoff J, Zhang Y, Wolberg W, et al. Syndecan-1 and syndecan-4 are overexpressed in an estrogen receptor-negative, highly proliferative breast carcinoma subtype. Breast Cancer Res Treat. 2006;98(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  109. Lim HC, Multhaupt HA, Couchman JR. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer. 2015;14(1):15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Lim HC, Couchman JR. Syndecan-2 regulation of morphology in breast carcinoma cells is dependent on RhoGTPases. Biochim Biophys Acta. 2014;1840(8):2482–90.

    Article  CAS  PubMed  Google Scholar 

  111. Lim HC, Multhaupt H, Couchman J. Syndecan-2 regulates the invasive phenotype of human breast carcinoma cells. FASEB J. 2013;27(1_MeetingAbstracts):650.3.

  112. Barbouri D, Afratis N, Gialeli C, Vynios DH, Theocharis AD, Karamanos N. Syndecans as modulators and potential pharmacological targets in cancer progression. Front Oncol. 2014;4.

  113. Wu ZS, Pandey V, Wu WY, Ye S, Zhu T, Lobie PE. Prognostic significance of the expression of GFRalpha1, GFRalpha3 and syndecan-3, proteins binding ARTEMIN, in mammary carcinoma. BMC Cancer. 2013;13:34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Kousidou OC, Berdiaki A, Kletsas D, Zafiropoulos A, Theocharis AD, Tzanakakis GN, et al. Estradiol–estrogen receptor: a key interplay of the expression of syndecan-2 and metalloproteinase-9 in breast cancer cells. Mol Oncol. 2008;2(3):223–32.

    Article  PubMed  Google Scholar 

  115. Lundstrom E, Sahlin L, Skoog L, Hagerstrom T, Svane G, Azavedo E, et al. Expression of Syndecan-1 in histologically normal breast tissue from postmenopausal women with breast cancer according to mammographic density. Climacteric. 2006;9(4):277–82.

    Article  CAS  PubMed  Google Scholar 

  116. Heusinger K, Jud S, Häberle L, Hack C, Fasching P, Meier-Meitinger M, et al. Association of mammographic density with the proliferation marker Ki-67 in a cohort of patients with invasive breast cancer. Breast Cancer Res Treat. 2012;135(3):885–92.

    Article  CAS  PubMed  Google Scholar 

  117. Ding J, Warren R, Girling A, Thompson D, Easton D. Mammographic density, estrogen receptor status and other breast cancer tumor characteristics. Breast J. 2010;16(3):279–89.

    Article  PubMed  Google Scholar 

  118. Guo Y-P, Martin LJ, Hanna W, Banerjee D, Miller N, Fishell E, et al. Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev. 2001;10(3):243–8.

    CAS  PubMed  Google Scholar 

  119. Hallberg G, Lundström E, Andersson E, Ekman-Ordeberg G. Mammographic breast density and the expression of androgen receptor, caspase 3, Ki67 and proteoglycans in pre-menopausal women. DiVA. 2011.

  120. Xian X, Gopal S, Couchman J. Syndecans as receptors and organizers of the extracellular matrix. Cell Tissue Res. 2010;339(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  121. Filmus J, Capurro M. The role of glypicans in Hedgehog signaling. Matrix Biol. 2014;35:248–52.

    Article  CAS  PubMed  Google Scholar 

  122. Traister A, Shi W, Filmus J. Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem J. 2008;410:503–11.

    Article  CAS  PubMed  Google Scholar 

  123. Filmus J, Capurro M, Rast J. Glypicans. Genome Biol. 2008;9(5):224.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  124. Matsuda K, Maruyama H, Guo F, Kleeff J, Itakura J, Matsumoto Y, et al. Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res. 2001;61(14):5562–9.

    CAS  PubMed  Google Scholar 

  125. Xiang YY, Ladeda V, Filmus J. Glypican-3 expression is silenced in human breast cancer. Oncogene. 2001;20(50):7408–12.

    Article  CAS  PubMed  Google Scholar 

  126. Peters MG, Farias E, Colombo L, Filmus J, Puricelli L, Bal de Kier Joffe E. Inhibition of invasion and metastasis by glypican-3 in a syngeneic breast cancer model. Breast Cancer Res Treat. 2003;80(2):221–32.

    Article  CAS  PubMed  Google Scholar 

  127. Buchanan C, Stigliano I, Garay-Malpartida HM, Rodrigues Gomes L, Puricelli L, Sogayar MC, et al. Glypican-3 reexpression regulates apoptosis in murine adenocarcinoma mammary cells modulating PI3K/Akt and p38MAPK signaling pathways. Breast Cancer Res Treat. 2010;119(3):559–74.

    Article  CAS  PubMed  Google Scholar 

  128. Okolicsanyi RK, van Wijnen AJ, Cool SM, Stein GS, Griffiths LR, Haupt LM. Heparan sulfate proteoglycans and human breast cancer epithelial cell tumorigenicity. J Cell Biochem. 2014;115(5):967–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Gomes AM, Stelling MP, Pavão MS. Heparan sulfate and heparanase as modulators of breast cancer progression. BioMed Res Int. 2013;2013.

  130. Javed A, Lteif A. Development of the human breast. Semin Plast Surg. 2013;27(1):5–12.

    Article  PubMed Central  PubMed  Google Scholar 

  131. Kolset SO, Tveit H. Serglycin--structure and biology. Cell Mol Life Sci. 2008;65(7-8):1073–85.

    Article  CAS  PubMed  Google Scholar 

  132. Korpetinou A, Skandalis SS, Moustakas A, Happonen KE, Tveit H, Prydz K, et al. Serglycin is implicated in the promotion of aggressive phenotype of breast cancer cells. PLoS ONE. 2013;8(10):e78157.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Korpetinou A, Skandalis SS, Labropoulou VT, Smirlaki G, Noulas A, Karamanos NK, et al. Serglycin: at the crossroad of inflammation and malignancy. Front Oncol. 2014;3:327.

    Article  PubMed Central  PubMed  Google Scholar 

  134. Iida J, Dorchak J, Clancy R, Slavik J, Ellsworth R, Katagiri Y, et al. Role for chondroitin sulfate glycosaminoglycan in NEDD9-mediated breast cancer cell growth. Exp Cell Res. 2015;330(2):358–70.

    Article  CAS  PubMed  Google Scholar 

  135. McLaughlin SL, Ice RJ, Rajulapati A, Kozyulina PY, Livengood RH, Kozyreva VK, et al. NEDD9 depletion leads to MMP14 inactivation by TIMP2 and prevents invasion and metastasis. Mol Cancer Res. 2014;12(1):69–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Gill JK, Maskarinec G, Pagano I, Kolonel LN. The association of mammographic density with ductal carcinoma in situ of the breast: the multiethnic cohort. Breast Cancer Res. 2006;8(3):R30.

    Article  PubMed Central  PubMed  Google Scholar 

  137. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. 2011;3(7):a004952.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  138. Cohen I, Pappo O, Elkin M, San T, Bar-Shavit R, Hazan R, et al. Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int J Cancer. 2006;118(7):1609–17.

    Article  CAS  PubMed  Google Scholar 

  139. Maxhimer JB, Quiros RM, Stewart R, Dowlatshahi K, Gattuso P, Fan M, et al. Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery. 2002;132(2):326–33.

    Article  PubMed  Google Scholar 

  140. Yang Y, Macleod V, Miao HQ, Theus A, Zhan F, Shaughnessy Jr JD, et al. Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem. 2007;282(18):13326–33.

    Article  CAS  PubMed  Google Scholar 

  141. Endo K, Takino T, Miyamori H, Kinsen H, Yoshizaki T, Furukawa M, et al. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem. 2003;278(42):40764–70.

    Article  CAS  PubMed  Google Scholar 

  142. Su G, Blaine SA, Qiao D, Friedl A. Membrane type 1 matrix metalloproteinase-mediated stromal syndecan-1 shedding stimulates breast carcinoma cell proliferation. Cancer Res. 2008;68(22):9558–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Thompson CA, Purushothaman A, Ramani VC, Vlodavsky I, Sanderson RD. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J Biol Chem. 2013;288(14):10093–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Roucourt B, Meeussen S, Bao J, Zimmermann P, David G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 2015;25(4):412–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Kazarin O, Ilan N, Naroditzky I, Ben-Itzhak O, Vlodavsky I, Bar-Sela G. Expression of heparanase in soft tissue sarcomas of adults. J Exp Clin Cancer Res. 2014;33:39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  146. Elkin M, Cohen I, Zcharia E, Orgel A, Guatta-Rangini Z, Peretz T, et al. Regulation of heparanase gene expression by estrogen in breast cancer. Cancer Res. 2003;63(24):8821–6.

    CAS  PubMed  Google Scholar 

  147. Chen JH, Hsu FT, Shih HN, Hsu CC, Chang D, Nie K, et al. Does breast density show difference in patients with estrogen receptor-positive and estrogen receptor-negative breast cancer measured on MRI? Ann Oncol. 2009;20(8):1447–9.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

EWT is supported in part by the National Breast Cancer Foundation (Australia). KB is supported by the National Breast Cancer Foundation (Australia). This study benefited from support from the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik W. Thompson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shawky, M.S., Ricciardelli, C., Lord, M. et al. Proteoglycans: Potential Agents in Mammographic Density and the Associated Breast Cancer Risk. J Mammary Gland Biol Neoplasia 20, 121–131 (2015). https://doi.org/10.1007/s10911-015-9346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-015-9346-z

Keywords

Navigation