Skip to main content

Advertisement

Log in

New Biological Insights on the Link Between Radiation Exposure and Breast Cancer Risk

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Radiation exposure is a well-documented risk factor for breast cancer in women. Compelling epidemiological evidence in different exposed populations around the world demonstrate that excess breast cancer increases with radiation doses above 10 cGy. Both frequency and type of breast cancer are affected by prior radiation exposure. Many epidemiological studies suggest that radiation risk is inversely related to age at exposure; exposure during puberty poses the greatest risk while exposures past the menopause appear to carry very low risk. These observations are supported by experimental studies in mice and rats, which together provide the basis for the pubertal ‘window of susceptibility’ hypothesis for carcinogenic exposure. One line of experimental investigation suggests that the pubertal epithelium is more sensitive because DNA damage responses are less efficient, an other suggests that radiation affects stem cells self-renewal. A recent line of investigation suggests that the irradiated microenvironment mediates cancer risk. Studying the biological basis for radiation effects provides potential routes for protection in vulnerable populations, which include survivors of childhood cancers, as well as insights into the biology for certain types of sporadic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Gy:

Gray

Sv:

Sievert

EAR:

excess absolute risk

ERR:

excess relative risk

BBD:

benign breast disease

HD:

Hodgkin’s lymphoma

ER:

estrogen receptor

DMBA:

dimethylbenz(a)anthracene

NMU:

N-methylnitrosourea

MNU:

methylnitrosourea

MaSC:

mammary stem cell

References

  1. Ronckers CM, Erdmann CA, Land CE. Radiation and breast cancer: a review of current evidence. Breast Cancer Res. 2005;7:21–32.

    PubMed  Google Scholar 

  2. Fry RJM, Powers-Risius P, Alpen EL, et al. High-LET radiation carcinogenesis. Adv Space Res. 1983;3:241–8.

    PubMed  CAS  Google Scholar 

  3. Mettler FA. Medical effects and risks of exposure to ionising radiation. J Radiol Prot. 2012;32(1):N9–N13.

    PubMed  CAS  Google Scholar 

  4. UNSCEAR. Sources and effects of ionizing radiation. New York: United Nations; 2006.

    Google Scholar 

  5. Mettler FA, Bhargavan M, Faulkner K, et al. Radiologic and Nuclear Medicine Studies in the United States and Worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–20071. Radiology. 2009;253(2):520–31.

    PubMed  Google Scholar 

  6. Tokunaga M, Land CE, Aoki Y, et al. Proliferative and nonproliferative breast disease in atomic bomb survivors. Results of a histopathologic review of autopsy breast tissue. Cancer. 1993;72(5):1657–65.

    PubMed  CAS  Google Scholar 

  7. Boice Jr JD, Preston D, Davis FG, et al. Frequent chest x-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res. 1991;125:214–22.

    PubMed  Google Scholar 

  8. Hancock SL, Tucker MA, Hoppe RT. Breast cancer after treatment of Hodgkin’s disease. J Natl Cancer Inst. 1993;85(1):25–31.

    PubMed  CAS  Google Scholar 

  9. Howe GR, McLaughlin J. Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with breast cancer mortality in the atomic bomb survivor study. Radiat Res. 1996;145:694–707.

    PubMed  CAS  Google Scholar 

  10. Boice Jr JD. Radiation and breast carcinogenesis. Med Pediatr Oncol. 2001;36:508–13.

    PubMed  Google Scholar 

  11. Preston DL, Mattsson A, Holmberg E, et al. Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res. 2002;158(2):220–35.

    PubMed  CAS  Google Scholar 

  12. Hoffman DA, Lonstein JE, Morin MM, et al. Breast cancer in women with scoliosis exposed to multiple diagnostic rays. J Natl Cancer Inst. 1989;81(17):1307–12.

    PubMed  CAS  Google Scholar 

  13. Ostroumova E, Preston DL, Ron E, et al. Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956–2004. Br J Cancer. 2008;99(11):1940–5.

    PubMed  CAS  Google Scholar 

  14. Shore RE, Hildreth N, Dvoretsky P, et al. Thyroid cancer among persons given X-ray treatment in infancy for an enlarged thymus gland. Am J Epidemiol. 1993;137(10):1068–80.

    PubMed  CAS  Google Scholar 

  15. Hajo Z, Gaël PH, Maria B. Epidemiological investigations of aircrew: an occupational group with low-level cosmic radiation exposure. J Radiol Prot. 2012;32(1):N15.

    Google Scholar 

  16. Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168(1):1–64.

    PubMed  CAS  Google Scholar 

  17. Pawel D, Preston D, Pierce D, et al. Improved estimates of cancer site-specific risks for a-bomb survivors. Radiat Res. 2008;169:87–98.

    PubMed  CAS  Google Scholar 

  18. Preston DL, Pierce DA, Shimizu Y, et al. Dose response and temporal patterns of radiation-associated solid cancer risks. Health Phys. 2003;85(1):43–6.

    PubMed  CAS  Google Scholar 

  19. Pierce DA, Shimizu Y, Preston DL, et al. Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950–1990. Radiat Res. 1996;146(1):1–27.

    PubMed  CAS  Google Scholar 

  20. Boice Jr JD, Harvey EB, Blettner M, et al. Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med. 1992;326(12):781–5.

    PubMed  Google Scholar 

  21. Morin Doody M, Lonstein JE, Stovall M, et al. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine. 2000;25(16):2052–63.

    Google Scholar 

  22. Mattsson A, Ruden B-I, Wilking N, et al. Radiation-induced breast cancer: long-term follow-up of radiation therapy for benign breast disease. J Natl Cancer Inst. 1993;85:1679–85.

    PubMed  CAS  Google Scholar 

  23. Shore RE, Hildreth N, Woodard E, et al. Breast cancer among women given X-ray therapy for acute postpartum mastitis. J Natl Cancer Inst. 1986;77(3):689–96.

    PubMed  CAS  Google Scholar 

  24. Lundell M, Mattsson A, Karlsson P, et al. Breast cancer risk after radiotherapy in infancy: a pooled analysis of two Swedish cohorts of 17,202 infants. Radiat Res. 1999;151(5):626–32.

    PubMed  CAS  Google Scholar 

  25. Hill DA, Preston-Martin S, Ross RK, et al. Medical radiation, family history of cancer, and benign breast disease in relation to breast cancer risk in young women, USA. Cancer Causes Control. 2002;13(8):711–8.

    PubMed  Google Scholar 

  26. Durante M, Cucinotta FA. Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer. 2008;8(6):465–72.

    PubMed  CAS  Google Scholar 

  27. Imaoka T, Nishimura M, Daino K, et al. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma. Int J Radiat Oncol Biol Phys 2012.

  28. Stovall M, Smith SA, Langholz BM, et al. Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int J Radiat Oncol Biol Phys. 2008;72(4):1021–30.

    PubMed  Google Scholar 

  29. Cohn BA, Wolff MS, Cirillo MP, et al. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007;115(10):1406–14.

    PubMed  CAS  Google Scholar 

  30. Henderson TO, Amsterdam A, Bhatia S, et al. Systematic review: surveillance for breast cancer in women treated with chest radiation for childhood, adolescent, or young adult cancer. Ann Intern Med. 2010;152(7):444–55.

    PubMed  Google Scholar 

  31. Van Leeuwen FE, Klokman WJ, Stovall M, et al. Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin’s disease. J Natl Cancer Inst. 2003;95(13):971–80.

    PubMed  Google Scholar 

  32. Castiglioni F, Terenziani M, Carcangiu ML, et al. Radiation effects on development of HER2-positive breast carcinomas. Clin Cancer Res. 2007;13(1):46–51.

    PubMed  CAS  Google Scholar 

  33. Broeks A, Braaf LM, Wessels LF, et al. Radiation-associated breast tumors display a distinct gene expression profile. Int J Radiat Oncol Phys. 2010;76(2):540–7.

    Google Scholar 

  34. Inskip PD, Robison LL, Stovall M, et al. Radiation dose and breast cancer risk in the childhood cancer survivor study. J Clin Oncol. 2009;27(24):3901–7.

    PubMed  Google Scholar 

  35. Mertens AC, Liu Q, Neglia JP, et al. Cause-specific late mortality among 5-year survivors of childhood cancer: the childhood cancer survivor study. J Natl Cancer Inst. 2008;100(19):1368–79.

    PubMed  Google Scholar 

  36. Schedin P. Pregnancy-associated breast cancer and metastasis. Nat Cancer Rev. 2006;6(4):281–91.

    CAS  Google Scholar 

  37. Lyons TR, O’Brien J, Borges VF, et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat Med. 2011;17(9):1109–15.

    PubMed  CAS  Google Scholar 

  38. Clifton KH, Sridharan BN, Douple EB. Mammary carcinogenesis-enhancing effect of adrenalectomy in irradiated rats with pituitary tumor MtT-F4. J Natl Cancer Inst. 1975;55(2):485–7.

    PubMed  CAS  Google Scholar 

  39. Sivaraman L, Conneely OM, Medina D, et al. p53 is a potential mediator of pregnancy and hormone-induced resistance to mammary carcinogenesis. Proc Natl Acad Sci U S A. 2001;98(22):12379–84.

    PubMed  CAS  Google Scholar 

  40. Clifton KH, Tanner MA, Gould MN. Assessment of radiogenic cancer initiation frequency per clonogenic rat mammary cell in vivo. Cancer Res. 1986;46:2390–5.

    PubMed  CAS  Google Scholar 

  41. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110(4):1001–20.

    PubMed  CAS  Google Scholar 

  42. Welm BE, Tepera SB, Venezia T, et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 2002;245(1):42–56.

    PubMed  CAS  Google Scholar 

  43. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    PubMed  CAS  Google Scholar 

  44. Visvader JE, Lindeman GJ. Mammary stem cells and mammopoiesis. Cancer Res. 2006;66(20):9798–801.

    PubMed  CAS  Google Scholar 

  45. Smith G, Medina D. Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res. 2008;10(1):203.

    PubMed  Google Scholar 

  46. Smith GH, Chepko G. Mammary epithelial stem cells. Microsc Res Tech. 2001;52(2):190–203.

    PubMed  CAS  Google Scholar 

  47. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998;125(10):1921–30.

    PubMed  CAS  Google Scholar 

  48. Russo J, Tait L, Russo IH. Susceptibility of the mammary gland to carcinogenesis. III. The cell of origin of rat mammary carcinoma. Am J Pathol. 1983;113(1):50–66.

    PubMed  CAS  Google Scholar 

  49. Russo J, Russo IH. Experimentally induced mammary tumors in rats. Breast Cancer Res Treat. 1996;39(1):7–20.

    PubMed  CAS  Google Scholar 

  50. Russo J, Tay LK, Russo IH. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat. 1982;2(1):5–73.

    PubMed  CAS  Google Scholar 

  51. Russo J, Russo IH. Biological and molecular bases of mammary carcinogenesis. Lab Invest. 1987;57(2):112–37.

    PubMed  CAS  Google Scholar 

  52. Thordarson G, Jin E, Guzman RC, et al. Refractoriness to mammary tumorigenesis in parous rats: is it caused by persistent changes in the hormonal environment or permanent biochemical alterations in the mammary epithelia? Carcinogenesis. 1995;16:2847–53.

    PubMed  CAS  Google Scholar 

  53. Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 Is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.

    PubMed  CAS  Google Scholar 

  54. Cairns J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci U S A. 2002;99(16):10567–70.

    PubMed  CAS  Google Scholar 

  55. Booth D, Haley JD, Bruskin AM, et al. Transforming growth factor-B3 protects murine small intestinal crypt stem cells and animal survival after irradiation, possibly by reducing stem-cell cycling. Int J Cancer. 2000;86(1):53–9.

    PubMed  CAS  Google Scholar 

  56. Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.

    PubMed  CAS  Google Scholar 

  57. Woodward WA, Chen MS, Behbod F, et al. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. PNAS. 2007;104(2):618–23.

    PubMed  CAS  Google Scholar 

  58. Kamiya K, Gould MN, Clifton KH. Differential control of alveolar and ductal development in grafts of monodispersed rat mammary epithelium. 1990.

  59. Kamiya K, Gould MN, Clifton KH. Quantitative studies of ductal versus alveolar differentiation from rat mammary clonogens. Proc Soc Exp Biol Med. 1998;219(3):217–25.

    PubMed  CAS  Google Scholar 

  60. Kamiya K, Kim ND, Gould MN, et al. Repair of potentially lethal damage in rat mammary clonogens following irradiation in organoid culture. Int J Radiat Biol. 1991;59(5):1207–16.

    PubMed  CAS  Google Scholar 

  61. Shimada Y, Yasukawa-Barnes J, Kim RY, et al. Age and radiation sensitivity of rat mammary clonogenic cells. Radiat Res. 1994;137:118–23.

    PubMed  CAS  Google Scholar 

  62. Ariazi JL, Haag JD, Lindstrom MJ, et al. Mammary glands of sexually immature rats are more susceptible than those of mature rats to the carcinogenic, lethal, and mutagenic effects of <I>N</I>-nitroso-<I>N</I>-methylurea. Mol Carcinog. 2005;43(3):155–64.

    PubMed  CAS  Google Scholar 

  63. Kamiya K, Yasukawa-Barnes J, Mitchen JM, et al. Evidence that carcinogenesis involves an imbalance between epigenetic high-frequency initiation and suppression of promotion. Proc Natl Acad Sci USA. 1995;92:1332–6.

    PubMed  CAS  Google Scholar 

  64. Kennedy AR, Little JB. Protease inhibitors suppress radiation-induced malignant transformation in vitro. Nature. 1978;276(5690):825–6.

    PubMed  CAS  Google Scholar 

  65. Kennedy AR, Fox M, Murphy G, et al. Relationship between x-ray exposure and malignant transformation in C3H 10T1/2 cells. Proc Natl Acad Sci U S A. 1980;77(12):7262–6.

    PubMed  CAS  Google Scholar 

  66. Britt K, Ashworth A, Smalley M. Pregnancy and the risk of breast cancer. Endocr Relat Cancer. 2007;14(4):907–33.

    PubMed  CAS  Google Scholar 

  67. Siwko SK, Dong J, Lewis MT, et al. Evidence that an early pregnancy causes a persistent decrease in the number of functional mammary epithelial stem cells - implications for pregnancy-induced protection against breast cancer. Stem Cells. 2008;26(12):3205–9.

    PubMed  Google Scholar 

  68. Britt K, Kendrick H, Regan J, et al. Pregnancy in the mature adult mouse does not alter the proportion of mammary epithelial stem/progenitor cells. Breast Cancer Res. 2009;11(2):R20.

    PubMed  Google Scholar 

  69. Liu B, McDermott S, Khwaja S, et al. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA. 2004;101:4158–63.

    PubMed  CAS  Google Scholar 

  70. Chen MS, Woodward WA, Behbod F, et al. Wnt/beta-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J Cell Sci. 2007;120(3):468–77. doi:10.1242/jcs.03348.

    PubMed  CAS  Google Scholar 

  71. Nguyen NH, Oketch HA, Geyer FC, et al. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease breast cancer latency and affect tumor type. Cancer Cell. 2011;19:640–51.

    PubMed  CAS  Google Scholar 

  72. Medina D, Oborn CJ, Kittrell FS, et al. Properties of mouse mammary epithelial cell lines characterized by in vivo transplantation and in vitro immunocytochemical methods. J Natl Cancer Inst. 1986;76(6):1143–56.

    PubMed  CAS  Google Scholar 

  73. Terzaghi M, Little JB. X-radiation-induced transformation in C3H mouse embryo-derived cell line. Cancer Res. 1976;36:1367–74.

    PubMed  CAS  Google Scholar 

  74. DeOme KB, Miyamoto MJ, Osborn RC, et al. Detection of inapparent nodule transformed cells in the mammary gland tissues of virgin female BALB/cfC3H mice. Cancer Res. 1978;38:2103–11.

    PubMed  CAS  Google Scholar 

  75. Ethier SP, Ullrich RL. Detection of ductal dysplasia in mammary outgrowths derived from carcinogen-treated virgin female BALB/c mice. Cancer Res. 1982;42:1753–60.

    PubMed  CAS  Google Scholar 

  76. Terzaghi-Howe M. Inhibition of carcinogen-altered rat tracheal epithelial cell proliferation by normal epithelial cells in vivo. Carcinogenesis. 1986;8:145–50.

    Google Scholar 

  77. Farber I. Possible etiologic mechanisms in chemical carcinogenesis. Environ Health Perspect. 1987;75:65–70.

    PubMed  CAS  Google Scholar 

  78. Banerjee MR, Chakraborty S, Kinder D, et al. Cell biology of mouse mammary carcinogenesis in organ culture. In: Medina D, Kidwell W, Heppner G, et al., editors. Cellular and molecular biology of mammary cancer. New York: Plenum Press; 1987. p. 353–80.

    Google Scholar 

  79. Ethier SP, Adams LM, Ullrich RL. Morphological and histological characteristics of mammary dysplasias occurring in cell dissociation-derived murine mammary outgrowths. Cancer Res. 1984;44:4517–22.

    PubMed  CAS  Google Scholar 

  80. Ethier SP, Ullrich RL. Induction of mammary tumors in virgin female BALB/c mice by single low doses of 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst. 1982;69(5):1199–203.

    PubMed  CAS  Google Scholar 

  81. Ethier SP, Ullrich RL. Factors influencing expression of mammary ductal dysplasia in cell dissociation-derived murine mammary outgrowths. Cancer Res. 1984;44:4523–7.

    PubMed  CAS  Google Scholar 

  82. Adams LM, Ethier SP, Ullrich RL. Enhanced in vitro proliferation and in vivo tumorigenic potential of mammary epithelium from BALB/c mice exposed in vivo to gamma-radiation and/or 7,12-dimethylbenz[a]anthracene. Cancer Res. 1987;47(16):4425–31.

    PubMed  CAS  Google Scholar 

  83. Ullrich RL. The rate of progression of radiation-transformed mammary epithelial cells is enhanced after low-dose-rate neutron irradiation. Radiat Res. 1986;105:68–75.

    PubMed  CAS  Google Scholar 

  84. Kamiya K, Higgins PD, Tanner MA, et al. Kinetics of mammary clonogenic cells and rat mammary cancer induction by X-rays or fission neutrons. J Radiat Res (Tokyo). 1999;40(Suppl):128–37.

    Google Scholar 

  85. Bissell MJ, Barcellos-Hoff MH. The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci. 1987;8:327–43.

    CAS  Google Scholar 

  86. Decosse JJ, Gossens CL, Kuzma JF, et al. Breast cancer: induction of differentiation by embryonic tissue. Science. 1973;181:1057–8.

    PubMed  CAS  Google Scholar 

  87. Cooper M, Pinkus H. Intrauterine transplantation of rat basal cell carcinoma as a model for reconversion of malignant to benign growth. Cancer Res. 1977;37:2544–52.

    PubMed  CAS  Google Scholar 

  88. Fujii H, Cunha GR, Norman JT. The induction of adenocarinomatous differentiation in neoplastic bladder epithelium by an embryonic prostatic inducer. J Urol. 1982;128:858–61.

    PubMed  CAS  Google Scholar 

  89. Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27.

    PubMed  CAS  Google Scholar 

  90. Farber E. Pre-cancerous steps in carcinogenesis. Their physiological adaptive nature. Biochem Biophys Acta. 1984;738:171–80.

    PubMed  CAS  Google Scholar 

  91. Barcellos-Hoff MH. The potential influence of radiation-induced microenvironments in neoplastic progression. J Mammary Gland Biol Neoplasia. 1998;3:165–75.

    PubMed  CAS  Google Scholar 

  92. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;1(1):1–11.

    Google Scholar 

  93. Tlsty TD. Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr Opin Cell Biol. 1998;10(5):647–53.

    PubMed  CAS  Google Scholar 

  94. Tubiana M, Aurengo A, Averbeck D, et al. Dose-effect relationships and estimation of the carcinogenic effect of low doses of ionizing radiation. Paris: Académie des Sciences - Académie Nationale de Médecine; 2005. p. 1–94.

    Google Scholar 

  95. Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment - tumorigenesis and therapy. Nat Rev Cancer. 2005;5(11):867–75.

    PubMed  CAS  Google Scholar 

  96. Little MP, Filipe JAN, Prise KM, et al. A model for radiation-induced bystander effects, with allowance for spatial position and the effects of cell turnover. J Theor Biol. 2005;232(3):329–38.

    PubMed  CAS  Google Scholar 

  97. Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, et al. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell. 2011;19(5):640–51.

    PubMed  CAS  Google Scholar 

  98. Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000;60:1254–60.

    PubMed  CAS  Google Scholar 

  99. Kaplan HS, Carnes WH, Brown MB, et al. Indirect Induction of Lymphomas in Irradiated Mice: I. Tumor Incidence and Morphology in Mice Bearing Nonirradiated Thymic Grafts. Cancer Res. 1956;16(5):422–5.

    PubMed  CAS  Google Scholar 

  100. Morgan JE, Gross JG, Pagel CN, et al. Myogenic cell proliferation and generation of a reversible tumorigenic phenotype are triggered by preirradiation of the recipient site. J Cell Biol. 2002;157(4):693–702.

    PubMed  CAS  Google Scholar 

  101. Mancuso M, Pasquali E, Leonardi S, et al. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci (USA). 2008;105(34):12445–50.

    CAS  Google Scholar 

  102. Medina D, Kittrell FS, Shepard A, et al. Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J. 2002;16(8):881–3.

    PubMed  CAS  Google Scholar 

  103. Cicalese A, Bonizzi G, Pasi CE, et al. The Tumor Suppressor p53 Regulates Polarity of Self-Renewing Divisions in Mammary Stem Cells. Cell. 2009;138(6):1083–95.

    PubMed  CAS  Google Scholar 

  104. Tao L, Roberts AL, Dunphy KA, et al. Repression of Mammary Stem/Progenitor Cells by P53 is Mediated by Notch and Separable from Apoptotic Activity. STEM CELLS 2010:N/A-N/A.

  105. Herschkowitz JI, Zhao W, Zhang M, et al. Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci 2011.

  106. Jensen EV, Jordan VC. The estrogen receptor: a model for molecular medicine. Clin Cancer Res. 2003;9(6):1980–9.

    PubMed  CAS  Google Scholar 

  107. Allred DC, Wu Y, Mao S, et al. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res. 2008;14(2):370–8.

    PubMed  CAS  Google Scholar 

  108. Parise CA, Bauer KR, Brown MM, et al. Breast Cancer Subtypes as Defined by the Estrogen Receptor (ER), Progesterone Receptor (PR), and the Human Epidermal Growth Factor Receptor 2 (HER2) among Women with Invasive Breast Cancer in California, 1998–2004. Breast J. 2009;15(6):593–602.

    PubMed  Google Scholar 

  109. Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest. 1994;70(1):6–22.

    PubMed  CAS  Google Scholar 

  110. Lim E, Wu D, Pal B, et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 2010;12(2):R21.

    PubMed  Google Scholar 

  111. Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.

    PubMed  Google Scholar 

  112. Bouras T, Pal B, Vaillant F, et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 2008;3(4):429–41.

    PubMed  CAS  Google Scholar 

  113. Purton LE, Scadden DT. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell. 2007;1(3):263–70.

    PubMed  CAS  Google Scholar 

  114. Mao JH, Li J, Jiang T, et al. Genomic instability in radiation-induced mouse lymphoma from p53 heterozygous mice. Oncogene. 2005;24(53):7924–34.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge funding from NASA Specialized Center for Research in Radiation Health Effects and the Low Dose Radiation Program of the Office of Biological and Environmental Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Helen Barcellos-Hoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcellos-Hoff, M.H. New Biological Insights on the Link Between Radiation Exposure and Breast Cancer Risk. J Mammary Gland Biol Neoplasia 18, 3–13 (2013). https://doi.org/10.1007/s10911-013-9272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-013-9272-x

Keywords

Navigation