Skip to main content
Log in

Zero interval limit perturbation expansion for the spectral entities of Hilbert–Schmidt operators combined with most dominant spectral component extraction: formulation and certain technicalities

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A perturbation-expansion-at-zero-interval-limit based numeric al algorithm to calculate the eigenpairs of Hilbert–Schmidt integral operators having symmetric kernels is developed in the present work. We have developed the perturbation expansion only for the most dominant eigenvalue and relevant eigenfunction. The less important eigenpairs have been determined by using the most dominant spectral component extraction recursively over the kernel restrictions. The main lines of the formulation and certain related technicalities are presented here. The confirmation of the presented theory via certain illustrative implementations and the convergence discussion for the obtained perturbation series as well as the numerical comparison with some mostly considered methods are given in the next companion of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.H. Gan, B.C. Eu, J. Chem. Phys. (1993). doi:10.1063/1.466106

    Google Scholar 

  2. E. Cancés, B. Mennucci, J. Math. Chem. (1998). doi:10.1023/A:1019133611148

    Google Scholar 

  3. T. Buchukuri, O. Chkadua, D. Natroshvili, Integral Equ. Oper. Theory (2009). doi:10.1007/s00020-009-1694-x

    Google Scholar 

  4. S. Arnrich, P. Bräuer, G. Kalies, J. Math. Chem. (2015). doi:10.1007/s10910-015-0531-5

    Google Scholar 

  5. A. Townsend, L.N. Trefethen, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. (2014) doi:10.1098/rspa.2014.0585

  6. S. Tuna, M. Demiralp, in AIP Conference Proceedings, vol. 1702 (2015), p. 170009. doi:10.1063/1.4938944

  7. B. Tunga, M. Demiralp, J. Math. Chem. (2010). doi:10.1007/s10910-010-9714-2

    Google Scholar 

  8. M.A. Tunga, M. Demiralp, J. Math. Chem. (2011). doi:10.1063/1.3637819

    Google Scholar 

  9. S. Tuna, B. Tunga, J. Math. Chem. (2012). doi:10.1007/s10910-013-0179-y

    Google Scholar 

  10. M.A. Tunga, M. Demiralp, J. Math. Chem. (2013). doi:10.1007/s10910-013-0228-6

    Google Scholar 

  11. M.A. Tunga, Int. J. Comput. Math. (2014). doi:10.1080/00207160.2014.941825

    Google Scholar 

  12. E. Korkmaz Özay, M. Demiralp, J. Math. Chem. (2014). doi:10.1007/s10910-014-0396-z

  13. M.A. Tunga, Int. J. Comput. Math. (2015). doi:10.1080/00207160.2014.941825

    Google Scholar 

  14. L. Debnath, P. Mikusiński, Introduction to Hilbert Spaces with Applications, 3rd edn. (Elsevier, Amsterdam, 2005)

    Google Scholar 

  15. F. Chatelin, Spectral Approximation of Linear Operators (SIAM, Philedelphia, 2011)

    Book  Google Scholar 

  16. F.G. Tricomi, Integral Equations (Interscience Publishers, New York, 1957)

    Google Scholar 

  17. L.N. Trefethen, D. Bau, Numerical Linear Algebra (SIAM, Philadelphia, 1997)

    Book  Google Scholar 

  18. C. Corduneanu, Math. Syst. Theory (1967). doi:10.1007/BF01705524

    Google Scholar 

  19. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1995)

    Google Scholar 

  20. E.J. Hinch, Perturbation Methods (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  21. M.H. Holmes, Introduction to Perturbation Methods (Springer, New York, 1995)

    Book  Google Scholar 

  22. I.M. Sobol, Math. Model. Comput. Exp. 1, 407–414 (1993)

    Google Scholar 

  23. H. Rabitz, Ö.F. Alış, J. Shorter, K. Shim, Comput. Phys. Commun. (1999). doi:10.1016/S0010-4655(98)00152-0

    Google Scholar 

  24. Ö.F. Alış, H. Rabitz, J. Math. Chem. (2001). doi:10.1023/A:1010979129659

    Google Scholar 

  25. M.A. Tunga, M. Demiralp, Appl. Math. Comput. (2005). doi:10.1016/j.amc.2004.06.056

    Google Scholar 

  26. M.A. Tunga, M. Demiralp, Int. J. Comput. Math. (2008). doi:10.1080/00207160701576095

    Google Scholar 

  27. W.W. Bell, Special Functions for Scientists and Engineers (Dover, New York, 2004)

    Google Scholar 

  28. S. Tuna, M. Demiralp, J. Math. Chem. (2017). doi:10.1007/s10910-017-0740-1

  29. W. Oevel, F. Postel, S. Wehmeier, J. Gerhard, The MuPAD Tutorial (Springer, Berlin, 2000)

    Book  Google Scholar 

  30. E. Korkmaz Özay, M. Demiralp, J. Math. Chem. (2012). doi:10.1007/s10910-012-0018-6

  31. E. Korkmaz Özay, M. Demiralp, Combined small scale enhanced multivariance product representation, in Proceedings of the International Conference on Applied Computer Science (2010), p. 350356

  32. S. Tuna, M. Demiralp, Mathematics (2017). doi:10.3390/math5010002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süha Tuna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demiralp, M., Tuna, S. Zero interval limit perturbation expansion for the spectral entities of Hilbert–Schmidt operators combined with most dominant spectral component extraction: formulation and certain technicalities. J Math Chem 55, 1253–1277 (2017). https://doi.org/10.1007/s10910-017-0739-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-017-0739-7

Keywords

Mathematics Subject Classification

Navigation