Skip to main content
Log in

Investigation of similarity and diversity threshold networks generated from diversity-oriented and focused chemical libraries

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Topological properties of chemical library networks, such as the average clustering coefficient, average path length, and existence of hubs, can serve as indicators to describe the inherent complexities of chemical libraries. We have used Diversity-Oriented Synthesis (DOS) and Focussed Libraries to investigate the appearance of scale-free properties and absence of small-world behavior in chemical libraries. DOS aims to elicit structural complexity in small compounds with respect to skeleton, functional groups, appendages and stereochemistry. Complexity here indicates incorporation of \(\hbox {sp}^{3}\) carbons, hydrogen bond acceptors and donors in the molecule. Biological studies have shown how structural complexity enhances the interaction of molecules with complex biological macromolecules. In contrast, Focussed Libraries concentrate on specific scaffolds against a specific biological target. We have quantified the diversity in several DOS and Focussed Libraries based on properties of similarity and dissimilarity threshold networks formed from them. Similarity and dissimilarity networks were generated from diverse chemical libraries at various Tanimoto similarity coefficients (\(\hbox {t}_{\mathrm{c}})\) using FP2 and MACCS fingerprints. The dissimilarity networks at very low \(\hbox {t}_{\mathrm{c}}\) threshold led to the absence of small-world behaviors, as evidenced by low average clustering coefficient and high average path length in comparison to Erdös–Renyi networks. Dissimilarity networks exhibit scale free topology as evidenced by a power law degree distribution. The similarity networks at high \(\hbox {t}_{\mathrm{c}}\) threshold have shown high clustering coefficients and low average path lengths, without the appearance of hubs. Combining dissimilarity and similarity threshold graphs revealed assortative and dissortative behaviors in the DOS libraries, leading to the conclusion that the vertices of the dissimilarity communities are more likely to share similarity edges, but it is quite unlikely for the vertices in a similarity community to share dissimilarity edges. We propose a simple and convenient diversity quantification tool, QuaLDI (Quantitative Library Diversity Index) to quantify the diversity in DOS and Focussed libraries. We anticipate that these topological properties can be used as descriptors to quantify the diversity in chemical libraries before proceeding for synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Raevsky, Mini-Rev. Med. Chem. 4, 1041 (2004)

    Article  CAS  Google Scholar 

  2. M.E.J. Newman, Phys. Rev. E 69, 066133 (2004)

    Article  CAS  Google Scholar 

  3. J. Hert, P. Willett, D.J. Wilton, J. Chem. Inf. Comput. Sci. 44, 1177 (2004)

    Article  CAS  Google Scholar 

  4. BioSolveIT, SciTegic (2007) Pipeline Pilot. (Accelrys Software, San Diego, CA) . Version 6.1.5

  5. N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, J. Cheminf. 3, 33 (2011)

    Article  Google Scholar 

  6. RStudio Team, RStudio: Integrated Development for R (RStudio, Inc., Boston, MA, 2015), http://www.rstudion.com/

  7. D. Rogers, M. Hahn, J. Chem. Inf. Model. 50, 742 (2010)

    Article  CAS  Google Scholar 

  8. M.P. Krein, N. Sukumar, J. Phys. Chem. A 115, 12905 (2011)

    Article  CAS  Google Scholar 

  9. N. Sukumar, S. Das, M. Krein, R. Godawat, I. Vitol, S. Garde, K.P. Bennett, C.M. Breneman, Computational approaches, in Cheminformatics and Bioinformatics, ed. by R. Guha, A. Bender (Wiley, Hoboken, 2011), pp. 107–143

    Chapter  Google Scholar 

  10. R.W. Benz, S.J. Swamidass, P. Baldi, J. Chem. Inf. Model. 48, 1138 (2008)

    Article  CAS  Google Scholar 

  11. T.G. Lewis, Network Science: Theory and Applications (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  12. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  CAS  Google Scholar 

  13. A.L. Barabasi, R. Albert, Science 286, 509 (1999)

    Article  Google Scholar 

  14. C. Qian, C. Hyunseok, R. Govindan, S. Jamin, IEEE Infocom. 2, 608 (2002)

    Google Scholar 

  15. H. Jeong, S.P. Mason, A.L. Barabasi, Z.N. Oltvai, Nature 411, 41 (2001)

    Article  CAS  Google Scholar 

  16. G.F. Davis, M. Yoo, W.E. Baker, Strateg. Organ. 1, 301 (2003)

    Article  Google Scholar 

  17. J.I. Perotti, F.A. Tamarit, S.A. Cannas, Phys. A 371, 71 (2006)

    Article  Google Scholar 

  18. T. Kodadek, Curr. Opin. Chem. Biol. 14, 713 (2010)

    Article  CAS  Google Scholar 

  19. J.Y. Ortholand, A. Ganesan, Curr. Opin. Chem. Biol. 8, 271 (2004)

    Article  CAS  Google Scholar 

  20. P. Willett, Inform. Res. 2, 3 (1996)

    Google Scholar 

  21. D.K. Agrafiotis, V.S. Lobanov, J. Chem. Inf. Model. 39, 51 (1999)

    CAS  Google Scholar 

  22. E.A. Wintner, C.C. Moallemi, J. Med. Chem. 43, 1993 (2000)

    Article  CAS  Google Scholar 

  23. H.M. Patel, M.N. Noolvi, P. Sharma, V. Jaiswal, S. Bansal, S. Lohan, S.S. Kumar, V. Abbot, S. Dhiman, V. Bhardwaj, Med. Chem. Res. 23, 4991–5007 (2014)

    Article  CAS  Google Scholar 

  24. S.L. Schreiber, Science 287, 1964 (2000)

    Article  CAS  Google Scholar 

  25. A. Grossmann, S. Bartlett, M. Janecek, J.T. Hodgkinson, D.R. Spring, Angew. Chem. 53, 13093 (2014)

    Article  CAS  Google Scholar 

  26. B. M. Ibbeson, L. Laraia, E. Alza, C.J. O’Connor, Y. S. Tan, H.M.L. Davies, G. McKenzie, A. R. Venkitaraman, D.R. Spring, Nature Comm. 5, 3155 (2014)

  27. V.S. Damerla, C. Tulluri, R. Gundla, L. Naviri, U. Adepally, P.S. Iyer, Y.L. Murthy, N. Prabhakar, S. Sen, Chem. Asian J. 7, 2351 (2012)

    Article  CAS  Google Scholar 

  28. R. Mamidala, V.S. Babu Damerla, R. Gundla, M.T. Chary, Y.L.N. Murthy, S. Sen, RSC Adv. 4, 10619 (2014)

    Article  CAS  Google Scholar 

  29. M. Cruz-Monteagudo, F. Borges, M. Perez Gonzalez, M.N. Cordeiro, Bioorg. Med. Chem. 15, 5322 (2007)

    Article  CAS  Google Scholar 

  30. J.L. Durant, B.A. Leland, D.R. Henry, J.G. Nourse, J. Chem. Inf. Comput. Sci. 42, 1273 (2002)

    Article  CAS  Google Scholar 

  31. G. Csardi, T. Nepusz, InterJournal Complex Syst. 1695 (2006). http://igraph.org

  32. M. Zwierzyna, M. Vogt, G.M. Maggiora, J. Bajorath, J. Comput.-Aided Molec. Des. 29, 113 (2015)

    Article  CAS  Google Scholar 

  33. R.D. Luce, A.D. Perry, Psychometrika 14, 95 (1949)

    Article  CAS  Google Scholar 

  34. P. Erdös, A. Renyi, Pub. Math. 6, 290 (1959)

    Google Scholar 

  35. M.E.J. Newman, Phys. Rev. E 67, 02616 (2003)

    Article  Google Scholar 

  36. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  CAS  Google Scholar 

  37. A. Clauset, M.E.J. Newman, C. Moore, Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  38. M. Girvan, M.E. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)

    Article  CAS  Google Scholar 

  39. M.E.J. Newman, Phys. Rev. E 74, 036104 (2006)

    Article  CAS  Google Scholar 

  40. P. Pons, M. Latapy, J. Graph Algorithms Applic. 10, 191 (2006)

    Article  Google Scholar 

  41. M.E.J. Newman, Contemp. Phys. 46, 323 (2005). https://arxiv.org/abs/cond-mat/0412004

  42. A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51(4), 661 (2009)

    Article  Google Scholar 

  43. D.L. Evans, J.H. Drew, L.M. Leemis, Comm. Stat. - Simul. Comput. 37, 1396 (2008)

    Article  Google Scholar 

  44. K. Wu, N. Sukumar, N. Lanzillo, C. Wang, R. Ramprasad, R. Ma, A.F. Baldwin, G. Sotzing, C.M. Breneman, J. Polymer Sci. B: Polymer Phys. (2016, in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sukumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, G., Bhattacharya, S., Krein, M.P. et al. Investigation of similarity and diversity threshold networks generated from diversity-oriented and focused chemical libraries. J Math Chem 54, 1916–1941 (2016). https://doi.org/10.1007/s10910-016-0657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0657-0

Keywords

Navigation