Skip to main content
Log in

Vertex cut method for degree and distance-based topological indices and its applications to silicate networks

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We have developed rigorous mathematical and computational techniques to obtain exact analytic expressions for a number of degree and distance-based topological indices of inorganic chemical networks and nanomaterials which are newly emerging areas of reticular chemistry. Derivations of these degree and distance-based topological indices of such chemical structures fall under a larger family of partial cubes for which only limited information is currently available. In the present study this gap is filled by developing a new method based on vertex decomposition and computing the degree and distance-based topological indices for polymeric chains, cyclic and double chain silicates, silicate and oxide networks as a function of n, the order of circumscribing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Alizadeh, A. Iranmanesh, S. Mirzaie, Computing Schultz polynomial and Schultz index of \(C_{60}\) fullerene by GAP program. Dig. J. Nanomater. Bios. 4(1), 7–10 (2009)

    Google Scholar 

  2. M. Arockiaraj, A.J. Shalini, Extended cut method for edge Wiener, Schultz and Gutman indices with applications. MATCH Commun. Math. Comput. Chem. 76, 233–250 (2016)

    Google Scholar 

  3. A.Q. Baig, M. Imran, H. Ali, On topological indices of poly oxide, poly silicate, DOX, and DSL networks. Can. J. Chem. 93(7), 730–739 (2015)

    Article  CAS  Google Scholar 

  4. S. Chen, Modified Schultz index of zig-zag polyhex nanotubes. J. Comput. Theor. Nanosci. 6(7), 1499–1503 (2009)

    Article  CAS  Google Scholar 

  5. V. Chepoi, M. Deza, V. Grishukhin, Clin d’oeil on \(L_{1}\)-embeddable planar graphs. Discrete Appl. Math. 80, 3–19 (1997)

    Article  Google Scholar 

  6. M.V. Diudea, Nanomolecules and nanostructures: polynomials and indices (University of Kragujevac, Kragujevac, (2010))

  7. M. Deza, J. Tuma, A note on \(l_{1}\)-rigid planar graphs. Eur. J. Comb. 17, 157–160 (1996)

    Article  Google Scholar 

  8. D. Djoković, Distance preserving subgraphs of hypercubes. J. Comb. Theory Ser. B 14, 263–267 (1973)

    Article  Google Scholar 

  9. M. Eliasi, N. Salehi, Schultz index of armchair polyhex nanotubes. Int. J. Mol. Sci. 9, 2016–2026 (2008)

    Article  CAS  Google Scholar 

  10. M.R. Farahani, M.P. Vlad, On the Schultz, modified Schultz and Hosoya polynomials and derived indices of capra-designed planar benzenoids. Stud. U. Babes. Bol. Che. 57(4), 55–63 (2012)

  11. M.R. Farahani, Hosoya, Schultz, modified Schultz polynomials and their topological indices of benzene molecules: first members of polycyclic aromatic hydrocarbons (PAHs). Int. J. Theor. Chem. 1(2), 9–16 (2013)

    Google Scholar 

  12. L.C. Freeman, A set of measures of centrality based upon betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  13. I. Gutman, Selected properties of the Schultz molecular topological index. J. Chem. Inf. Comput. Sci. 34, 1087–1089 (1994)

    Article  CAS  Google Scholar 

  14. I. Gutman, S. Klažvar, Comparison of the Schultz molecular topological index with the Wiener index. J. Chem. Inf. Comput. Sci. 36, 1001–1003 (1996)

    Article  Google Scholar 

  15. I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer, Berlin, 1986)

    Book  Google Scholar 

  16. S. Hayat, M. Imran, Computation of topological indices of certain networks. Appl. Math. Comput. 240, 213–228 (2014)

    Google Scholar 

  17. A. Heydari, On the modified Schultz index of \(C_{4}C_{8}(S)\) nanotubes and nanotorus. Dig. J. Nanomater. Bios. 5(1), 51–56 (2010)

    Google Scholar 

  18. A. Iranmanesh, Y. Alizadeh, Computing hyper Wiener and Schultz indices of \(TUZC_{6}[p, q]\) nanotube by GAP program. Dig. J. Nanomater. Bios. 4(4), 607–611 (2009)

    Google Scholar 

  19. J. Jiang, Y. Zhao, O.M. Yaghi, Covalent chemistry beyond molecules. J. Am. Chem. Soc. 138(10), 3255–3265 (2016)

    Article  CAS  Google Scholar 

  20. M. Karelson, Molecular Descriptors in QSAR/QSPR (Wiley, New York, 2000)

    Google Scholar 

  21. M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Another aspect of graph invariants depending on the path metric and an application in nanoscience. Comput. Math. Appl. 60, 2460–2468 (2010)

    Article  Google Scholar 

  22. S. Klažvar, I. Gutman, B. Mohar, Labeling of benzenoid systems which reflects the vertex distance relations. J. Chem. Inf. Comput. Sci. 35, 590–593 (1995)

    Article  Google Scholar 

  23. S. Klažvar, M.J. Nadjafi-Arani, Cut method: update on recent developments and equivalence of independent approaches. Curr. Org. Chem. 19(4), 348–358 (2015)

    Article  Google Scholar 

  24. Y. Liu, Y. Ma, Y. Zhao, X. Sun, F. Gándara, H. Furukawa, Z. Liu, H. Zhu, C. Zhu, K. Suenaga, P. Oleynikov, A.S. Alshammari, X. Zhang, O. Terasaki, O.M. Yaghi, Weaving of organic threads into crystalline covalent organic frameworks. Science 351, 365–369 (2016)

    Article  CAS  Google Scholar 

  25. P. Manuel, I. Rajasingh, Minimum metric dimension of silicate networks. Ars. Comb. 98, 501–510 (2011)

    Google Scholar 

  26. N.T.T. Nguyen, H. Furukawa, F. Gándara, C.A. Trickett, H.M. Jeong, K.E. Cordova, O.M. Yaghi, Three-dimensional metal catecholate networks and their ultrahigh proton affinities. J. Am. Chem. Soc. 137, 15394–15397 (2015)

    Article  CAS  Google Scholar 

  27. D. Plavšić, S. Nikolić, N. Trinajstić, D.J. Klein, Relation between the Wiener index and the Schultz index for several classes of chemical graphs. Croat. Chem. Acta. 66, 345–353 (1993)

    Google Scholar 

  28. J. Quadras, K. Balasubramanian, K.A. Christy, Analytical expressions for Wiener indices of n-circumscribed peri-condensed benzenoid graphs. J. Math. Chem. 54(3), 823–843 (2016)

    Article  CAS  Google Scholar 

  29. B. Rajan, A. William, C. Grigorious, S. Stephen, On certain topological indices of silicate, honeycombs and hexagonal networks. J. Comput. Math. Sci. 3(5), 530–535 (2012)

    Google Scholar 

  30. H.P. Schultz, Topological organic chemistry. 1: graph theory and topological indices of alkanes. J. Chem. Inf. Comput. Sci. 29, 239–257 (1989)

    Article  Google Scholar 

  31. S.V. Shpectorov, On scale embeddings of graphs into hypercubes. Eur. J. Comb. 14, 117–130 (1993)

    Article  Google Scholar 

  32. R. Škrekovski, I. Gutman, Vertex version of the Wiener theorem. MATCH Commun. Math. Comput. Chem. 72, 295–300 (2014)

    Google Scholar 

  33. P.J. Waller, F. Gándara, O.M. Yaghi, Chemistry of covalent organic frameworks. Acc. Chem. Res. 48(12), 3053–3063 (2015)

    Article  CAS  Google Scholar 

  34. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  CAS  Google Scholar 

  35. P. Winkler, Isometric embeddings in products of complete graphs. Discrete Appl. Math. 7, 221–225 (1984)

    Article  Google Scholar 

  36. Z. Xiao, S. Chen, The modified Schultz index of armchair polyhex nanotubes. J. Comput. Theor. Nanosci. 6(5), 1109–1114 (2009)

    Article  CAS  Google Scholar 

  37. Z. Yarahmadi, Computing some topological indices of tensor product of graphs. Iran. J. Math. Chem. 2, 109–118 (2011)

    Google Scholar 

Download references

Acknowledgments

M. Arockiaraj is supported by Project Number SB/FTP/MS-004/2014, Science and Engineering Research Board, New Delhi, India. K. Balasubramanian would like to thank the US Department of Energy, Office of Basic Energy Sciences, Chemical, Bio and Geosciences Davison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ruth Julie Kavitha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arockiaraj, M., Kavitha, S.R.J. & Balasubramanian, K. Vertex cut method for degree and distance-based topological indices and its applications to silicate networks. J Math Chem 54, 1728–1747 (2016). https://doi.org/10.1007/s10910-016-0646-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0646-3

Keywords

Navigation