Skip to main content
Log in

Analysis of atomic integrals involving explicit correlation factors for the three-electron case. I. Connection to the hypergeometric function \(_{3}{{\varvec{F}}}_{2}\)

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This work considers the solution of atomic three-electron integrals that involve explicit inter-electronic separation factors. The traditional Sack expansion is replaced by an alternative expansion, which avoids the breakup of the radial integrals into a number of factors depending on the lesser and greater of the inter-electronic separation distances. The present approach avoids the N! increase in the number of required auxiliary functions, where N is the number of electrons. The new approach leads to additional infinite summations, but these summations either converge very quickly in a serial calculation, or can be effectively dealt with using the massively parallel architecture of a graphics processing unit. The new auxiliary functions that arise are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Puchalski, K. Pachucki, Phys. Rev. A 73, 022503 (2006)

    Article  Google Scholar 

  2. F.W. King, Phys. Rev. A 76, 042512 (2007)

    Article  Google Scholar 

  3. F.W. King, J. Phys. Chem. A 113, 4110 (2009)

    Article  CAS  Google Scholar 

  4. J.S. Sims, S.A. Hagstrom, Phys. Rev. A 80, 052507 (2009)

    Article  Google Scholar 

  5. M. Puchalski, K. Pachucki, Phys. Rev. A 81, 052505 (2010)

    Article  Google Scholar 

  6. M. Puchalski, D. Kedziera, K. Pachucki, Phys. Rev. A 82, 062509 (2010)

    Article  Google Scholar 

  7. L.M. Wang, Z.-C. Yan, H.X. Qiao, G.W.F. Drake, Phys. Rev. A 83, 034503 (2011)

    Article  Google Scholar 

  8. L.M. Wang, Z.-C. Yan, H.X. Qiao, G.W.F. Drake, Phys. Rev. A 85, 052513 (2012)

    Article  Google Scholar 

  9. F.W. King, J. Mol. Struct. (Theochem) 400, 7 (1997)

    Article  CAS  Google Scholar 

  10. F.W. King, Advances in Atomic, Molecular, and Optical Physics, vol. 40 (Academic Press, San Diego, 1999), p. 57

    Google Scholar 

  11. J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz, W. Cencek, K. Szalewicz, J. Komasa, D. Blume, K. Varga, Rev. Mod. Phys. 85, 693 (2013)

    Article  Google Scholar 

  12. S. Bubin, M. Pavanelo, W.-C. Tung, K.L. Sharkey, L. Adamowicz, Chem. Rev. 113, 36 (2013)

    Article  CAS  Google Scholar 

  13. S. Bubin, L. Adamowicz, Phys. Rev. A 87, 042510 (2013)

    Article  Google Scholar 

  14. K. Pachucki, M. Puchalski, E. Remiddi, Phys. Rev. A 70, 032502 (2004)

    Article  Google Scholar 

  15. F.W. King, J. Phys. B: At. Mol. Opt. Phys. 47, 025003 (2014)

    Article  Google Scholar 

  16. F.W. King, J. Phys. B: At. Mol. Opt. Phys. 49, 105001 (2016)

    Article  Google Scholar 

  17. N.L. Guevara, F.E. Harris, A.V. Turbiner, Int. J. Quantum Chem. 109, 3036 (2009)

    Article  CAS  Google Scholar 

  18. F.E. Harris, V.V. Albert, Adv. Quantum Chem. 67, 3 (2013)

    Article  CAS  Google Scholar 

  19. H.M. James, A.S. Coolidge, Phys. Rev. 49, 688 (1936)

    Article  CAS  Google Scholar 

  20. Y. Öhrn, J. Nordling, J. Chem. Phys. 39, 1864 (1963)

    Article  Google Scholar 

  21. L. Szász, J. Chem. Phys. 35, 1072 (1961)

    Article  Google Scholar 

  22. S. Larsson, Phys. Rev. 169, 49 (1968)

    Article  CAS  Google Scholar 

  23. J.F. Perkins, J. Chem. Phys. 48, 1985 (1968)

    Article  CAS  Google Scholar 

  24. Y.K. Ho, B.A.P. Page, J. Comput. Phys. 17, 122 (1975)

    Article  CAS  Google Scholar 

  25. A. Berk, A.K. Bhatia, B.R. Junker, A. Temkin, Phys. Rev. A 34, 4591 (1986)

    Article  CAS  Google Scholar 

  26. D.M. Fromm, R.N. Hill, Phys. Rev. A 36, 1013 (1987)

    Article  Google Scholar 

  27. E. Remiddi, Phys. Rev. A 44, 5492 (1991)

    Article  CAS  Google Scholar 

  28. G.W.F. Drake, Z.-C. Yan, Phys. Rev. A 52, 3681 (1995)

    Article  CAS  Google Scholar 

  29. F.E. Harris, Phys. Rev. A 55, 1820 (1997)

    Article  CAS  Google Scholar 

  30. P.J. Pelzl, F.W. King, Phys. Rev. E 57, 7268 (1998)

    Article  CAS  Google Scholar 

  31. V.S. Zotev, T.K. Rebane, Phys. Rev. A 65, 062501 (2002)

    Article  Google Scholar 

  32. J.S. Sims, S.A. Hagstrom, Phys. Rev. A 68, 016501 (2003)

    Article  Google Scholar 

  33. J.S. Sims, S.A. Hagstrom, Phys. Rev. A 68, 059903 (2003)

    Article  Google Scholar 

  34. F.E. Harris, A.M. Frolov, V.H. Smith Jr., Phys. Rev. A 69, 056501 (2004)

    Article  Google Scholar 

  35. F.E. Harris, A.M. Frolov, V.H. Smith Jr., J. Chem. Phys. 120, 9974 (2004)

    Article  CAS  Google Scholar 

  36. F.E. Harris, Int. J. Quantum Chem. 105, 857 (2005)

    Article  CAS  Google Scholar 

  37. A.M. Frolov, D.H. Bailey, J. Phys. B: At. Mol. Opt. Phys. 36, 1857 (2003)

    Article  CAS  Google Scholar 

  38. J.S. Sims, S.A. Hagstrom, J. Phys. B: At. Mol. Opt. Phys. 37, 1519 (2004)

    Article  CAS  Google Scholar 

  39. M.B. Ruiz, Int. J. Quantum Chem. 101, 261 (2005)

    Article  CAS  Google Scholar 

  40. F.E. Harris, Phys. Rev. A 79, 032517 (2009)

    Article  Google Scholar 

  41. M.B. Ruiz, J. Math. Chem. 46, 24 (2009)

    Article  CAS  Google Scholar 

  42. M.B. Ruiz, J. Math. Chem. 46, 1322 (2009)

    Article  CAS  Google Scholar 

  43. M.B. Ruiz, J. Math. Chem. 49, 2457 (2011)

    Article  CAS  Google Scholar 

  44. C. Wang, P. Mei, Y. Kurokawa, H. Nakashima, H. Nakatsuji, Phys. Rev. A 85, 042512 (2012)

    Article  Google Scholar 

  45. Z.-C. Yan, G.W.F. Drake, Phys. Rev. Lett. 81, 774 (1998)

    Article  CAS  Google Scholar 

  46. F.W. King, D.G. Ballegeer, D.J. Larson, P.J. Pelzl, S.A. Nelson, T.J. Prosa, B.M. Hinaus, Phys. Rev. A 58, 3597 (1998)

    Article  CAS  Google Scholar 

  47. A. Lüchow, H. Kleindienst, Int. J. Quantum Chem. 51, 211 (1994)

    Article  Google Scholar 

  48. F.W. King, J. Chem. Phys. 102, 8053 (1995)

    Article  CAS  Google Scholar 

  49. F.W. King, Phys. Rev. A 44, 7108 (1991)

    Article  CAS  Google Scholar 

  50. F.W. King, K.J. Dykema, A.D. Lund, Phys. Rev. A 46, 5406 (1992)

    Article  CAS  Google Scholar 

  51. A. Lüchow, H. Kleindienst, Int. J. Quantum Chem. 41, 719 (1992)

    Article  Google Scholar 

  52. A. Lüchow, H. Kleindienst, Int. J. Quantum Chem. 45, 445 (1993)

    Article  Google Scholar 

  53. I. Porras, F.W. King, Phys. Rev. A 49, 1637 (1994)

    Article  CAS  Google Scholar 

  54. Z.-C. Yan, G.W.F. Drake, J. Phys. B: At. Mol. Opt. Phys. 30, 4723 (1997)

    Article  CAS  Google Scholar 

  55. D.M. Feldmann, P.J. Pelzl, F.W. King, J. Math. Phys. 39, 6262 (1998)

    Article  CAS  Google Scholar 

  56. F.W. King, Int. J. Quantum Chem. 72, 93 (1999)

    Article  CAS  Google Scholar 

  57. P.J. Pelzl, G.J. Smethells, F.W. King, Phys. Rev. E 65, 036707 (2002)

    Article  Google Scholar 

  58. R.A. Sack, J. Math. Phys. 5, 245 (1964)

    Article  Google Scholar 

  59. V. McKoy, J. Chem. Phys. 42, 2959 (1965)

    Article  CAS  Google Scholar 

  60. F. Byron Jr., C.J. Joachain, Phys. Rev. 146, 1 (1966)

    Article  CAS  Google Scholar 

  61. A.M. Frolov, V.H. Smith Jr., Int. J. Quantum Chem. 63, 269 (1997)

    Article  CAS  Google Scholar 

  62. R.F. Gentner, E.A. Burke, Phys. Rev. 176, 63 (1968)

    Article  CAS  Google Scholar 

  63. J.F. Perkins, J. Chem. Phys. 50, 2819 (1969)

    Article  CAS  Google Scholar 

  64. J.S. Sims, S.A. Hagstrom, J. Chem. Phys. 55, 4699 (1971)

    Article  CAS  Google Scholar 

  65. F.W. King, J. Chem. Phys. 99, 3622 (1993)

    Article  CAS  Google Scholar 

  66. H. Kleindienst, G. Büsse, A. Lüchow, Int. J. Quantum Chem. 53, 575 (1995)

    Article  CAS  Google Scholar 

  67. F.E. Harris, A.M. Frolov, V.H. Smith Jr., J. Chem. Phys. 120, 3040 (2004)

    Article  CAS  Google Scholar 

  68. F.W. King, J. Chem. Phys. 120, 3042 (2004)

    Article  CAS  Google Scholar 

  69. J.S. Sims, S.A. Hagstrom, J. Phys. B: At. Mol. Opt. Phys. 40, 1575 (2007)

    Article  CAS  Google Scholar 

  70. F.W. King, in Recent Advances in Computational Chemistry. Molecular Integrals over Slater Orbitals, ed. by T. Özdogan, M.B. Ruiz (Transworld Research, Kerala, 2008), pp. 39–84

    Google Scholar 

  71. A.M. Frolov, J. Phys. B: At. Mol. Opt. Phys. 37, 2103 (2004)

    Article  CAS  Google Scholar 

  72. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)

    Google Scholar 

  73. D. Levin, Int. J. Comput. Math. B 3, 371 (1973)

    Article  Google Scholar 

  74. W.N. Bailey, Generalized Hypergeometric Series (Hafner Publishing Company, New York, 1972)

    Google Scholar 

  75. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. I (Krieger, Malabar, 1981)

    Google Scholar 

  76. E.D. Rainville, Special Functions (Macmillan, New York, 1960)

    Google Scholar 

  77. L.J. Slater, Generalized Hypergeometric Functions (Cambridge University Press, London, 1966)

    Google Scholar 

  78. Y.L. Luke, The Special Functions and Their Approximations, vol. 1 (Academic Press, New York, 1969)

    Google Scholar 

  79. A.M. Mathai, R.K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences (Springer, Berlin, 1973)

    Google Scholar 

  80. Y.L. Luke, Mathematical Functions and their Approximations (Academic Press, New York, 1975)

    Google Scholar 

  81. H. Exton, Handbook of Hypergeometric Integrals (Ellis Horwood, Chichester, 1978)

    Google Scholar 

  82. G. Gaspar, M. Rahman, Basic Hypergeometric Series (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  83. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, vol. 3: More Special Functions (Gordon and Breach, New York, 1990)

  84. G.E. Andrews, R. Askey, R. Roy, Special Functions (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  85. J. Wimp, Comput. Math. Appl. 9, 669 (1983)

    Article  Google Scholar 

  86. D. Zeilberger, J. Comput. Appl. Math. 39, 379 (1992)

    Article  Google Scholar 

  87. R.S. Maier, Trans. Am. Math. Soc. 358, 39 (2005)

    Article  Google Scholar 

  88. C. Krattenthaler, J. Symb. Comput. 20, 737 (1995)

    Article  Google Scholar 

  89. C. Krattenthaler, Hyp: http://www.mat.univie.ac.at/people/kratt (1995)

  90. C. Krattenthaler, T. Rivoal, J. Math. Soc. Jpn. 58, 183 (2006)

    Article  Google Scholar 

  91. M. Milgram, arXiv:math.CA/0603096 (2006)

  92. R. Rösler, Zeit. Angew. Math. Mech. 43, 433 (1963)

    Article  Google Scholar 

  93. S.C. Mitra, J. Indian Math. Soc. 6, 84 (1942)

    Google Scholar 

  94. B.M. Milton, J. Math. Phys. 11, 1375 (1970)

    Article  Google Scholar 

  95. P.W. Karlsson, J. Math. Phys. 12, 270 (1971)

    Article  Google Scholar 

  96. H.M. Srivastava, Indag. Math. 35, 38 (1973)

    Article  Google Scholar 

  97. P.W. Karlsson, Indag. Math. 36, 195 (1974)

    Article  Google Scholar 

  98. J.E. Gottschalk, E.N. Maslen, J. Phys. A: Math. Gen. 21, 1983 (1988)

    Article  Google Scholar 

  99. J. Thomae, J. für Math. 87, 26 (1879)

    Google Scholar 

Download references

Acknowledgments

Preliminary support from the National Science Foundation and from the Donors of the Petroleum Research Fund, administered by the American Chemistry Society, is greatly appreciated. We also thank the Office of University Research, University of Wisconsin-Eau Claire for support. I.P. acknowledges a grant from the Spanish Ministerio de Educación (PRX12/00683), which provided financial assistance for his visit. We thank Morgan Leider for constructive comments on Cuda coding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Porras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, C.H., Porras, I. & King, F.W. Analysis of atomic integrals involving explicit correlation factors for the three-electron case. I. Connection to the hypergeometric function \(_{3}{{\varvec{F}}}_{2}\) . J Math Chem 54, 1514–1552 (2016). https://doi.org/10.1007/s10910-016-0633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0633-8

Keywords

Navigation