Skip to main content
Log in

On the evaluation of integrals with Coulomb Sturmian radial functions

  • Brief Communication
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

It is presented the full evaluation of integrals involving Coulomb Sturmian functions already discussed in this Journal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. Shull, P.O. Löwdin, Superposition of configurations and natural spin-orbitals. Applications to the He problem. J. Chem. Phys. 30, 617–626 (1959)

    Article  CAS  Google Scholar 

  2. M. Rotenberg, Application of Sturmian functions to the Schroedinger three-body problem: Elastic \(\text{ e }^{+}\)-H scattering. Ann. Phys. 19, 262–278 (1962)

    Article  CAS  Google Scholar 

  3. M. Rotenberg, Theory and application of Sturmian functions. Adv. Atom. Mol. Phys. 6, 233–268 (1970)

    Article  CAS  Google Scholar 

  4. J.E. Avery, New computational methods in the quantum theory of nanostructures. PhD thesis, University of Copenhagen (2011)

  5. J.E. Avery, J.S. Avery, Generalized Sturmians and Atomic Spectra (World Scientific, Singapore, 2006)

    Book  Google Scholar 

  6. J.E. Avery, J.S. Avery, The generalized Sturmian method, in Solving the Schrödinger Equation: Has Everything Been Tried? Chap. 6, ed. by P. Popelier (Imperial College Press, 2011), pp. 111–140

  7. J.S. Avery, Hyperspherical Harmonics and Generalized Sturmians (Kluwer, Dordrecht, 2000)

    Google Scholar 

  8. J. Avery, Many-center Coulomb Sturmians and Shibuya-Wulfman integrals. Int. J. Quantum Chem. 100, 121–130 (2004)

    Article  CAS  Google Scholar 

  9. E. Red, C.A. Weatherford, Derivation of a general formula for the Shibuya–Wulfman matrix. Int. J. Quantum Chem. 100, 208–213 (2004)

    Article  CAS  Google Scholar 

  10. R. Beals, R. Wong, Special Functions (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  11. T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Comm. Pure Appl. Math. 10, 151–177 (1957)

    Article  Google Scholar 

  12. P. E. Hoggan, Slater-type orbital basis sets: reliable and rapid solution of the Schrödinger equation for accurate molecular properties, in Solving the Schrödinger Equation: Has Everything Been Tried? Chap 7, ed. by P. Popelier (Imperial College Press, Ames, 2011)

  13. J. Slater, Analytic atomic wave functions. Phys. Rev. 42, 33–43 (1932)

    Article  CAS  Google Scholar 

  14. M.P. Barnett, C.A. Coulson, The evaluation of integrals occurring in the theory of molecular structure. Parts I and II. Phil. Trans. R. Soc. Lond. A 243, 221–249 (1951)

    Article  Google Scholar 

  15. P.O. Löwdin, Quantum theory of cohesive properties of solids. Adv. Phys. 5, 1–172 (1956)

    Article  Google Scholar 

  16. F.E. Harris, H.H. Michels, Multicenter integrals in quantum mechanics. I. Expansion of Slater-type orbitals about a new origin. J. Chem. Phys. 43, S165–S169 (1965)

    Article  CAS  Google Scholar 

  17. Y.G. Smeyers, About evaluation of many-center molecular integrals. Theoret. Chim. Acta (Berlin) 4, 452–459 (1966)

    Article  CAS  Google Scholar 

  18. I.I. Guseinov, Unified analytical treatment of multicenter multielectron integrals of central and noncentral interaction potentials over Slater orbitals using \(\Psi ^{\alpha }\)-ETOs. J. Chem. Phys. 119, 4614–4619 (2003)

    Article  CAS  Google Scholar 

  19. S.F. Boys, G.B. Cook, C.M. Reeves, I. Shavitt, Automatic fundamental calculations of molecular structure. Nature 178, 1207–1209 (1956)

    Article  Google Scholar 

  20. E.J. Weniger, E.O. Steinborn, The Fourier transforms of some exponential-type basis functions and their relevance for multicenter problems. J. Chem. Phys. 78, 6121–6132 (1983)

    Article  CAS  Google Scholar 

  21. E.J. Weniger, Weakly convergent expansions of a plane wave and their use in Fourier integrals. J. Math. Phys. 26, 276–291 (1985)

    Article  Google Scholar 

  22. E.J. Weniger, J. Grotendorst, E.O. Steinborn, Unified analytical treatment of overlap, two-center nuclear attraction, and Coulomb integrals of B functions via the Fourier-transform method. Phys. Rev. A 33, 3688–3705 (1986)

    Article  Google Scholar 

  23. D. Antolovic, H.J. Silverstone, On the computation of (2–2) three-center Slater-type orbital integrals of \(1/\text{ r }_{12}\) using Fourier-transform-based analytical formulas. Int. J. Quantum Chem. 100, 146–154 (2004)

    Article  CAS  Google Scholar 

  24. I. Shavitt, M. Karplus, Multicenter integrals in molecular quantum mechanics. J. Chem. Phys. 36, 550–551 (1962)

    Article  CAS  Google Scholar 

  25. I. Shavitt, M. Karplus, Gaussian-transform method for molecular integrals. I. Formulation for energy integrals. J. Chem. Phys. 43, 398–414 (1965)

    Article  CAS  Google Scholar 

  26. J. Fernández-Rico, R. López, I. Ema, G. Ramirez, Reference program for molecular calculations with Slater-type orbitals. J. Comp. Chem. 25, 1987–1994 (2004)

    Article  Google Scholar 

  27. R.S. Mulliken, C.A. Rieke, D. Orloff, H. Orloff, J. Chem. Phys. 17, 1248–1267 (1949)

    Article  CAS  Google Scholar 

  28. S. Huzinaga, Molecular integrals. Prog. Theor. Phys. Suppl. 40, 52–77 (1967)

    Article  Google Scholar 

  29. J.C. Browne, Molecular wave functions: calculation and use in atomic and molecular processes. Adv. At. Mol. Phys. 7, 47–95 (1971)

    Article  Google Scholar 

  30. J. Yaisui, A. Saika, J. Chem. Phys. 76, 468–472 (1982)

    Article  Google Scholar 

  31. S. Varganov, A.T.B. Gilbert, E. Deplazes, P.M.W. Gill, Resolutions of the Coulomb operator. J. Chem. Phys 128, 201104-1–201104-4 (2008)

    Google Scholar 

  32. P.M.W. Gill, A.T.B. Gilbert, Resolution of the Coulomb operator II. The Laguerre generator. Chem. Phys. 356, 86–92 (2009)

    Article  CAS  Google Scholar 

  33. P.E. Hoggan, General two-electron exponential type orbital integrals in polyatomics without orbital translations. Int. J. Quantum Chem. 109, 2926–2932 (2009)

    Article  CAS  Google Scholar 

  34. F.E. Harris, H.H. Michels, The evaluation of molecular integrals for Slater-type orbitals. Adv. Chem. Phys. 13, 205–266 (1967)

    CAS  Google Scholar 

  35. F.E. Harris, Analytic evaluation of two-center STO electron repulsion integrals via ellipsoidal expansion. Int. J. Quantum Chem. 88, 701–734 (2002)

    Article  CAS  Google Scholar 

  36. J.E. Avery, J.S. Avery, Molecular integrals for Slater type orbitals using Coulomb Sturmians. J. Math. Chem. 52, 301–312 (2014)

    Article  CAS  Google Scholar 

  37. E. Filter, E.O. Steinborn, Extremely compact formulas for molecular two-center one-electron integrals and Coulomb integrals over Slater-type atomic orbitals. Phys. Rev. A 18, 1–11 (1978)

    Article  CAS  Google Scholar 

  38. E.J. Weniger, The strange history of B functions or how theoretical chemists and mathematicians do (not) interact. Int. J. Quantum Chem. 109, 1706–1716 (2009)

    Article  CAS  Google Scholar 

  39. E.J. Weniger, E.O. Steinborn, Addition theorems for B functions and other exponentially declining functions. J. Math. Phys. 30, 774–784 (1989)

    Article  Google Scholar 

  40. E.J. Weniger, E.O. Steinborn, Numerical properties of the convolution theorems of B functions. Phys. Rev. A 28, 2026–2041 (1983)

    Article  CAS  Google Scholar 

  41. J.S. Avery, Hyperspherical Harmonics: Applications in Quantum Theory (Kluwer, Dordrecht, 1989)

    Book  Google Scholar 

  42. I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, seventh edition, ed. by A. Jeffrey and D. Zwillinger (Academic Press, Amsterdam, 2007)

  43. R.G. Parr, H.W. Joy, Why not use Slater orbitals of nonintegral principal quantum number? J. Chem. Phys. 26, 424 (1957)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Morales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, D.A. On the evaluation of integrals with Coulomb Sturmian radial functions. J Math Chem 54, 682–689 (2016). https://doi.org/10.1007/s10910-015-0588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0588-1

Keywords

Mathematics Subject Classification

Navigation