Skip to main content
Log in

The fast Padé transform for noisy magnetic resonance spectroscopic data from the prostate: potential contribution to individualized prostate cancer care

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) can enhance prostate cancer diagnostics, but have limitations that are largely due to reliance upon conventional Fourier-based signal processing. MRS of the prostate is exceedingly difficult, due to high spectral density with numerous multiplet resonances. We apply advanced signal processing methods through the fast Padé transform (FPT) to time signals generated according to in vitro MRS data as encoded from normal glandular and stromal prostate as well as from prostate cancer. Random Gauss-distributed zero mean noise is added to the noise-free time signal. The high resolution capabilities are demonstrated: at short partial signal lengths \((N_{\mathrm{P}})\), converged total and component spectra from the prostate are generated by the FPT. In comparison, Fourier-based processing provides only rough, uninformative total shape spectra. Detailed analysis reveals the powerful, complementary features of the two variants \(\hbox {FPT}^{(\pm )}\) of the FPT in separating the copious spurious content from genuine resonances. At short \(N_{\mathrm{P}}\), the FPT resolved all the physical resonances, including multiplets and closely overlapping peaks of different metabolites, exactly reconstructing all the input spectral parameters, from which the metabolite concentrations were precisely computed. Systematic study of noise-corrupted time signals in the controlled setting is a critical step in benchmarking the FPT for clinical applications. We discuss how these results could increase the diagnostic accuracy of MRS and MRSI of the prostate, and how this could contribute to a more individualized care of patients with prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Since the partial signal length \(N_{\mathrm{P}} = 650\) is not of the form \(2^{{m}}\) (m is a positive integer), the discrete Fourier transform, DFT, is used.

  2. The expounded spectral analysis is concerned primarily with time signals from MRS. However, the developed theory via the \(\hbox {FPT}^{(\pm )}\) also holds true for MRSI. The technical difference between MRS and MRSI is in that the former and the latter are for single- and multi-voxel encoding, respectively, from the scanned tissue. Clinically, MRSI is necessary whenever there is a need for volume coverage of the imaged tissue. This occurs if there is a suspicion that a single voxel examined by MRS might be insufficiently representative of the actual status of the examined tissue.

Abbreviations

1D:

One dimensional

2D:

Two dimensional

ADC:

Apparent diffusion coefficient

au:

Arbitrary units

BPH:

Benign prostatic hypertrophy

Cho:

Choline

Cit:

Citrate

Cr:

Creatine

DCE:

Dynamic contrast-enhanced

DFT:

Discrete Fourier transform

DWI:

Diffusion weighted imaging

FFT:

Fast Fourier transform

FID:

Free induction decay

FPT:

Fast Padé transform

GPC:

Glycerophosphocholine

HRMAS:

High resolution magic angle spinning

m-Ins:

Myoinositol

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MRSI:

Magnetic resonance spectroscopic imaging

NMR:

Nuclear magnetic resonance

PA:

Polyamine

PC:

Phosphocholine

PCM:

Personalized cancer medicine

ppm:

Parts per millions

PSA:

Prostate specific antigen

RF:

Radiofrequency

rms:

Root-mean-square

RT:

Radiation therapy

SNR:

Signal-to-noise ratio

SNS:

Signal-noise separation

Tau:

Taurine

TOCSY:

Total correlation spectroscopy

TRUS:

Trans-urethral ultrasound

TSP:

(3-(Trimethylsilyl-) 3,3,2,2-tetradeutero-propionic acid

ww:

Wet weight

References

  1. M.F. Kircher, H. Hricak, S.M. Larson, Molecular imaging for personalized cancer care. Mol. Oncol. 6, 182–195 (2012)

    Article  CAS  Google Scholar 

  2. Dž. Belkić, K. Belkić, Molecular imaging in the framework of personalized cancer medicine. Isr. Med. Assoc. J. 15, 665–672 (2013)

  3. M. Center, A. Jemal, J. Lortet-Tieulent, E. Ward, J. Ferlay, O. Brawley, F. Bray, International variation in prostate cancer incidence and mortality rates. Eur. Urol. 61, 1079–1092 (2012)

    Article  Google Scholar 

  4. G. Haas, N. Delongchamps, O. Brawley, C. Wang, G. de la Roza, The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can. J. Urol. 15, 3866–3871 (2008)

    Google Scholar 

  5. A. Horwich, C. Parker, V. Kataja, ESMO Guidelines Working Group, Prostate cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann. Oncol. 19(Suppl 2), ii45–ii46 (2008)

    Google Scholar 

  6. V. Kundra, P.M. Silverman, S.F. Matin, H. Choi, Imaging in oncology from the University of Texas M. D. Anderson Cancer Center: diagnosis, staging, and surveillance of prostate cancer. Am. J. Roentgenol. 189, 830–844 (2007)

    Article  Google Scholar 

  7. L.S. Lim, K. Sherin, ACPM Prevention Practice Committee, Screening for prostate cancer in U.S. men. Am. J. Prev. Med. 34, 164–170 (2008)

    Article  Google Scholar 

  8. F. Pinto, A. Totaro, G. Palermo, A. Calarco, E. Sacco, A. D’Addessi, M. Racioppi, A. Valentini, B. Gui, Imaging in prostate cancer staging: present role and future perspectives. Urol. Int. 88, 125–136 (2012)

    Article  Google Scholar 

  9. Y.-S. Pu, H.-S. Chiang, C.C. Lin, C.-Y. Huang, K.-H. Huang, J. Chen, Changing trends of prostate cancer in Asia. Aging Male 7, 120–132 (2004)

    Article  CAS  Google Scholar 

  10. B. Signorello, H.-O. Adami, Prostate cancer, in Textbook of Cancer Epidemiology, ed. by H.-O. Adami, D. Hunter, T. Trichopoulos (Oxford University Press, Oxford, 2002), pp. 400–428

  11. P.R. Carroll, K.L. Lee, Z.Y. Fuks, P.W. Kantoff, Cancer of the prostate, in Cancer Principles and Practice of Oncology, 6th edn., ed. by V.T. de Vita, S. Hellman, S.A. Rosenberg (Lippincott Williams & Wilkins, Philadelphia, 2001), pp. 1418–1479

    Google Scholar 

  12. S. Franceschi, C.P. Wild, Meeting the global demands of epidemiologic transition: the indispensable role of cancer prevention. Mol. Oncol. 7, 1–13 (2013)

    Article  Google Scholar 

  13. H.L. Scher, Hyperplastic and malignant diseases of the prostate, in Harrison’s Principles of Internal Medicine, 15th edn., ed. by E. Braunwald, A. Fauci, D.L. Kasper, S.L. Hauser, D.L. Longo, J.L. Jameson (McGraw-Hill, New York, 2001), pp. 608–616

    Google Scholar 

  14. K. Belkić, Molecular Imaging through Magnetic Resonance for Clinical Oncology (Cambridge International Science Publishing, Cambridge, 2004)

    Google Scholar 

  15. M. Lagemaat, C. Zechmann, J. Fütterer, E. Weiland, J. Lu, G. Villeirs, B. Holshouser, P. van Hecke, M. Lemort, H.-P. Schlemmer, J. Barentsz, S. Roell, A. Arend Heerschap, T. Scheenen, Reproducibility of 3D \(^{1}\text{ H }\) MR spectroscopic imaging of the prostate at 1.5T. J. Magn. Reson. Imaging 35, 166–173 (2012)

    Article  Google Scholar 

  16. C. Bosetti, P. Bertuccio, F. Levi, F. Lucchini, E. Negri, C. La Vecchia, Cancer mortality in the European Union, 1970–2003, with a joinpoint analysis. Ann. Oncol. 19, 631–640 (2008)

    Article  CAS  Google Scholar 

  17. C. Bouchardy, G. Fioretta, E. Rapiti, H. Verkooijen, C. Rapin, F. Schmidlin, R. Miralbell, R. Zanetti, Recent trends in prostate cancer mortality show a continuous decrease in several countries. Int. J. Cancer 123, 421–429 (2008)

    Article  CAS  Google Scholar 

  18. A. Bill-Axelson, L. Holmberg, H. Garmo, J. Rider, K. Taari, C. Busch, S. Nordling, M. Häggman, S.-O. Andersson, A. Spångberg, O. Andrén, J. Palmgren, G. Steineck, H.-O. Adami, J. Johansson, Radical prostatectomy versus watchful waiting in early prostate cancer. N. Engl. J. Med. 364, 1708–1717 (2011)

    Article  CAS  Google Scholar 

  19. C.H. Bangma, M. Bul, M. Roobol, The prostate cancer research international: active surveillance study. Curr. Opin. Urol. 22, 216–221 (2012)

    Article  Google Scholar 

  20. I.M. Thompson, D.K. Pauler, P.J. Goodman, C.M. Tangen, M.S. Lucia, H.L. Parnes, L.M. Minasian, L.G. Ford, S.M. Lippman, E.D. Crawford, J.J. Crowley, C.A. Coltman, Prevalence of prostate cancer among men with a prostate-specific antigen level \(\le \) 4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004)

    Article  CAS  Google Scholar 

  21. G. Lippi, M. Martina Montagnana, G. Guidi, M. Plebani, Prostate-specific antigen-based screening for prostate in the third millennium. Ann. Med. 41, 480–489 (2009)

    Article  CAS  Google Scholar 

  22. K. Lin, R. Lipsitz, T. Miller, S. Janakiraman, U.S. Preventive, Benefits and harms of prostate-specific antigen screening for prostate cancer: an evidence update from the U.S. Preventive Services Task Force. Ann. Intern. Med. 149, 192–199 (2008)

    Article  Google Scholar 

  23. U.S. Preventive Services Task Force Screening for Prostate Cancer, U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 149, 185–191 (2008)

    Article  Google Scholar 

  24. F.H. Schröder, Screening for prostate cancer: an update on recent findings of the European Randomized Study of Screening for Prostate Cancer (ERSPC). Urol. Oncol. 26, 533–541 (2008)

    Article  Google Scholar 

  25. T. Franiel, S. Carsten, A. Erbersdobler, E. Dietz, A. Maxeiner, N. Hell, A. Huppertz, K. Miller, R. Strecker, B. Hamm, Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal ultrasound-guided biopsy with a negative finding—multiparametric MR imaging for detection and biopsy planning. Radiology 259, 162–172 (2011)

    Article  Google Scholar 

  26. C. Testa, R. Schiavina, R. Lodi, E. Salizzoni, C. Tonon, A. D’Errico, B. Corti, A. Morselli-Labate, A. Franceschelli, A. Bertaccini, F. Manferrarik, W. Grigioni, R. Canini, G. Martorana, B. Barbiroli, Accuracy of MRI/MRSI-based transrectal ultrasound biopsy in peripheral and transition zones of the prostate gland in patients with prior negative biopsy. NMR Biomed. 23, 1017–1026 (2010)

    Article  CAS  Google Scholar 

  27. A. Rincon Mayans, B. Diaz-Tejeiro, J. Rioja Zuazu, L. Diaz Dorronsoro, M. Rodriguez Fraile, A. Boillos, J. Zudaire Bergera, How do endorectal MRI, PET-CT and transrectal ultrasound contribute to diagnostic and management of localized prostate cancer? Arch. Esp. Urol. 64, 746–764 (2011)

    Google Scholar 

  28. D.K. Ornstein, J. Kang, How to improve prostate biopsy detection of prostate cancer. Curr. Urol. Rep. 2, 218–223 (2001)

    Article  CAS  Google Scholar 

  29. H. Hricak, MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br. J. Radiol. 78, S103–111 (2005)

    Article  Google Scholar 

  30. Y. Mazaheri, A. Shukla-Dave, H. Hricak, MR imaging of the prostate, in Magnetic Resonance, Volume 3 in Comprehensive Biomedical Physics, ed. by Dž. Belkić, K. Belkić (Elsevier, Amsterdam, 2014), pp. 193–204

  31. C. Hoeks, J. Barentsz, T. Hambrock, D. Yakar, D. Somford, S. Heijmink, T. Scheenen, P. Vos, H. Huisman, I. van Oort, J. Witjes, A. Heerschap, J. Fütterer, Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261, 46–66 (2011)

    Article  Google Scholar 

  32. A. Sciarra, V. Panebianco, M. Ciccariello, S. Salciccia, S. Cattarino, D. Lisi, A. Gentilucci, A. Alfarone, S. Bernardo, R. Passariello, V. Gentile, Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin. Cancer Res. 16, 1875–1883 (2010)

    Article  CAS  Google Scholar 

  33. M.C. Goris Gbenou, A. Peltier, S.K. Addla, M. Lemort, R. Bollens, D. Larsimont, T. Thierry Roumeguère, C. Schulman, R. van Velthoven, Localising prostate cancer: comparison of endorectal magnetic resonance (MR) imaging and 3D-MR Spectroscopic Imaging with transrectal ultrasound-guided biopsy. Urol. Int. 88, 12–17 (2012)

    Article  Google Scholar 

  34. Y. Mazaheri, A. Shukla-Dave, H. Hricak, S.W. Fine, J. Zhang, G. Inurrigarro, C.S. Moskowitz, N.M. Ishill, V.E. Reuter, K. Touijer, K.L. Zakian, J.A. Koutcher, Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging—correlation with pathologic findings. Radiology 246, 480–488 (2008)

    Article  Google Scholar 

  35. V. Panebianco, F. Barchetti, A. Sciarra, A. Ciardi, E. LuciaIndino, R. Papalia, M. Gallucci, V. Tombolini, V. Gentile, C. Catalano, Multiparametric magnetic resonance imaging versus standard care in men being evaluated for prostate cancer: a randomized study. Urol. Oncol. Semin. Orig. Investig. 33, 17.e1–17.e7 (2015)

    Article  Google Scholar 

  36. S. Katz, M. Rosen, MR imaging and MR spectroscopy in prostate cancer management. Radiol. Clin. N. Am. 44, 723–734 (2006)

    Article  Google Scholar 

  37. S. Verma, A. Rajesh, J. Fütterer, B. Turkbey, T. Scheenen, Y. Pang, P. Choyke, J. Kurhanewicz, Prostate MRI and 3D MR spectroscopy: how we do it. Am. J. Roentgenol. 194, 1414–1426 (2010)

    Article  Google Scholar 

  38. V. Kumar, N.R. Jagannathan, MR spectroscopy (MRS) of the prostate, in Magnetic Resonance, Volume 3 in Comprehensive Biomedical Physics, ed. by Dž. Belkić, K. Belkić (Elsevier, Amsterdam, 2014), pp. 287–298

  39. J. Kurhanewicz, M.G. Swanson, S.J. Nelson, D.B. Vigneron, Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J. Magn. Reson. Imaging 16, 451–463 (2002)

    Article  Google Scholar 

  40. L.C. Costello, R.B. Franklin, P. Narayan, Citrate in the diagnosis of prostate cancer. Prostate 38, 237–245 (1999)

    Article  CAS  Google Scholar 

  41. J.M. Garcia-Segura, M. Sanchez-Chapad, C. Ibarburen, J. Viano, J. Angulo, J. Gonzalez, J. Rodriguez-Vallejo, In vivo proton magnetic resonance spectroscopy of prostate disease: spectroscopic features of malignant versus benign pathology. Magn. Reson. Imaging 17, 755–765 (1999)

    Article  CAS  Google Scholar 

  42. T. Scheenen, J. Fütterer, E. Weiland, P. van Hecke, M. Lemort, C. Zechmann, H.-P. Schlemmer, D. Broome, G. Villeirs, J. Lu, J. Jelle Barentsz, S. Roell, A. Heerschap, Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Investig. Radiol. 46, 25–33 (2011)

    Article  Google Scholar 

  43. A. Sciarra, V. Panebianco, M. Ciccariello, S. Salciccia, D. Lisi, M. Osimani, A. Alfarone, A. Gentilucci, U. Parente, R. Passariello, V. Gentile, Magnetic resonance spectroscopic imaging (1H-MRSI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI): Pattern changes from inflammation to prostate cancer. Cancer Investig. 28, 424–432 (2010)

    Article  CAS  Google Scholar 

  44. A. Shukla-Dave, H. Hricak, C. Moskowitz, N. Ishill, O. Akin, K. Kuroiwa, J. Spector, M. Kumar, V. Reuter, J. Koutcher, K. Zakian, Detection of prostate cancer with MR spectroscopic imaging: an expanded paradigm incorporating polyamines. Radiology 245, 499–506 (2007)

    Article  Google Scholar 

  45. S. Cirillo, M. Petracchini, P. Della Monica, T. Gallo, V. Tartaglia, E. Vestita, U. Ferrando, D. Regge, Value of endorectal MRI and MRS in patients with elevated prostate-specific antigen levels and previous negative biopsies to localize peripheral zone tumors. Clin. Radiol. 63, 871–879 (2008)

    Article  CAS  Google Scholar 

  46. H.C. Weinreb, J.D. Blume, F.V. Coakley, T.M. Wheeler, J.B. Cormack, C.K. Sotto, H. Cho, A. Kawashima, C.M. Tempany-Afdhal, K.J. Macura, M. Rosen, S.R. Gerst, J. Kurhanewicz, Prostate cancer: sextant localization of MR imaging and MR spectroscopic imaging before prostatectomy—results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251, 122–133 (2009)

    Article  Google Scholar 

  47. J. Weis, H. Ahlström, P. Hlavčak, M. Häggman, F. Ortiz-Nieto, A. Bergman, Two-dimensional spectroscopic imaging for pre-treatment evaluation of prostate cancer: comparison with the step-section history after radical prostatectomy. Magn. Reson. Imaging 27, 87–93 (2009)

    Article  Google Scholar 

  48. C.S. Arteaga de Castro, B. van den Bergen, P.R. Luijten, U.A. van der Heide, M. van Vulpen, D.W.J. Klomp, Improving SNR and B1 transmit field for an endorectal coil in 7 T MRI and MRS of prostate cancer, Magn. Reson. Med. 68, 311–318 (2012)

    Article  CAS  Google Scholar 

  49. M. Chitkara, A. Westphalen, J. Kurhanewicz, A. Qayyum, L. Poder, G. Reed, F.V. Coakley, Magnetic resonance spectroscopic imaging of benign prostatic tissue: findings at 3.0 T compared to 1.5 T: initial experience. Clin. Imaging 35, 288–293 (2011)

    Article  Google Scholar 

  50. C.K. Kim, B.K. Park, Update of prostate magnetic resonance imaging at 3T. J. Comput. Assist. Tomogr. 32, 163–172 (2008)

    Article  Google Scholar 

  51. M.W. Lagemaat, E.K. Vos, M.C. Maas, A.K. Bitz, S. Orzada, M.J. van Uden, T. Kobus, A. Heerschap, T.W.J. Scheenen, Phosphorus magnetic resonance spectroscopic imaging at 7 T in patients with prostate cancer. Invest. Radiol. 49, 363–372 (2014)

    Article  CAS  Google Scholar 

  52. D.W. McRobbie, E. Moore, M. Graves, M. Prince, MRI from Picture to Proton (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  53. D. Spielman, In vivo proton MR spectroscopy: basic principles and clinical applications: section for MR Technol. Educ. Semin. 3, 19–37 (2000)

    Google Scholar 

  54. Dž. Belkić, K. Belkić, Signal Processing in Magnetic Resonance Spectroscopy with Biomedical Applications (CRC Press Taylor & Francis Group, Boca Raton, 2010)

  55. M. McLean, T. Barrett, V. Gnanapragasam, A. Priest, I. Joubert, D. Lomas, D. Neal, J. Griffiths, E. Sala, Prostate cancer metabolite quantification relative to water in 1H-MRSI in vivo at 3 Tesla. Magn. Reson. Med. 65, 914–919 (2011)

    Article  CAS  Google Scholar 

  56. A. Westphalen, D. McKenna, J. Kurhanewicz, F.V. Coakley, Role of magnetic resonance imaging and magnetic resonance spectroscopic imaging before and after radiotherapy for prostate cancer. J. Endourol. 22, 789–794 (2008)

    Article  Google Scholar 

  57. M.A. Thomas, N. Binesh, K. Yue, S. Banakar, N. Wyckoff, A. Huda, A. Marumoto, S. Raman, Adding a new spectral dimension to localized 1H MR spectroscopy of human prostates using an endorectal coil. Spectroscopy 16, 521–527 (2003)

    Article  Google Scholar 

  58. M.A. Thomas, T. Lange, S.S. Velan, R. Nagarajan, S. Raman, A. Gomez, D. Margolis, S. Swart, R.R. Raylman, R.F. Schulte, P. Boesiger, Two-dimensional MR spectroscopy of healthy and cancerous prostates in vivo. Magn. Reson. Mater. Phys. 21, 443–458 (2008)

    Article  CAS  Google Scholar 

  59. Dž. Belkić, High-resolution parametric estimation of two-dimensional magnetic resonance spectroscopy, in 20th Annual Meeting of European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), Abstract Number 365 (CD), Rotterdam, September 18–21 (2003)

  60. A. Huda, R. Nagarajan, J. Furuyama, M.A. Thomas, In vivo two-dimensional magnetic resonance spectroscopy, in Magnetic Resonance, Volume 3 in Comprehensive Biomedical Physics, ed. By Dž. Belkić, K. Belkić (Elsevier, Amsterdam, 2014), pp. 359–377

  61. I.C. Smith, D.E. Blandford, Diagnosis of cancer in humans by 1H NMR of tissue biopsies. Biochem. Cell. Biol. 76, 472–476 (1998)

    Article  CAS  Google Scholar 

  62. P. Swindle, S. McCredie, P. Russell, Pathologic characterization of human prostate tissue with proton MR spectroscopy. Radiology 228, 144–151 (2003)

    Article  Google Scholar 

  63. J.A. Koutcher, K. Zakian, H. Hricak, Magnetic resonance spectroscopic studies of the prostate. Mol. Urol. 4, 143–153 (2000)

    CAS  Google Scholar 

  64. E. Ackerstaff, B.R. Pflug, J.B. Nelson, Z.M. Bhujwalla, Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res. 61, 3599–3603 (2001)

    CAS  Google Scholar 

  65. M.G. Swanson, K.R. Keshari, Z.L. Tabatabai, J.P. Simko, K. Shinohara, P.R. Carroll, A.S. Zektzer, J. Kurhanewicz, Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HRMAS total correlation spectroscopy. Magn. Reson. Med. 60, 33–40 (2008)

    Article  CAS  Google Scholar 

  66. M. Beloueche-Babari, J.C. Peak, L. Jackson, M.-Y. Tiet, M.O. Leach, S.A. Eccles, Changes in choline metabolism as potential biomarkers of phospholipase C\(\gamma \)1 inhibition in human prostate cancer cells. Mol. Cancer Ther. 8, 1305–1311 (2009)

    Article  CAS  Google Scholar 

  67. G. Eliyahu, T. Kreizman, H. Degani, Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int. J. Cancer 120, 1721–1730 (2007)

    Article  CAS  Google Scholar 

  68. K. Glunde, J. Jiang, S.A. Moestue, I.S. Gribbestad, MRS/MRSI guidance in molecular medicine: targeting choline and glucose metabolism. NMR Biomed. 24, 673–690 (2011)

    Article  CAS  Google Scholar 

  69. R. Dittrich, J. Kurth, E.A. Decelle, E.M. DeFeo, M. Taupitz, S. Wu, Wu C-l, W.S. McDougal, L.L. Cheng, Assessing prostate cancer growth with citrate measured by intact tissue proton magnetic resonance spectroscopy. Prostate Cancer Prostat. Dis. 15, 278–282 (2012)

    Article  CAS  Google Scholar 

  70. M.G. Swanson, D.B. Vigneron, Z.L. Tabatabai, J. Simko, S. Jarso, K.R. Keshari, L. Schmitt, P.R. Carroll, K. Shinohara, D.B. Vigneron, J. Kurhanewicz, Proton HRMAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn. Reson. Med. 50, 944–954 (2003)

    Article  CAS  Google Scholar 

  71. M.B. Tessem, M.G. Swanson, K.R. Keshari, M.J. Albers, D. Joun, Z.L. Tabatabai, J.P. Simko, K. Shinohara, S.J. Nelson, D.B. Vigneron, I.S. Gribbestad, J. Kurhanewicz, Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HRMAS spectroscopy of biopsy tissue. Magn. Reson. Med. 60, 510–516 (2008)

    Article  CAS  Google Scholar 

  72. M.G. Swanson, A.S. Zektzer, Z.L. Tabatabai, J. Simko, S. Jarso, K.R. Keshari, L. Schmitt, P.R. Carroll, K. Shinohara, D.B. Vigneron, J. Kurhanewicz, Quantitative analysis of prostate metabolites using 1H HRMAS spectroscopy. Magn. Reson. Med. 55, 1257–1264 (2006)

    Article  CAS  Google Scholar 

  73. K. Belkić, Dž. Belkić, Possibilities for improved early breast cancer detection by Padé-optimized MRS. Isr. Med. Assoc. J. 13, 236–243 (2011)

  74. Dž. Belkić, Strikingly stable convergence of the fast Padé transform (FPT) for high resolution parametric and non-parametric signal processing of Lorentzian and non-Lorentzian spectra. Nucl. Instrum. Methods Phys. Res. A 525, 366–371 (2004)

  75. Dž. Belkić, Quantum Mechanical Signal Processing and Spectral Analysis (Institute of Physics Publishing, Bristol, 2005)

  76. Dž. Belkić, Exact quantification of time signals in Padé-based magnetic resonance spectroscopy. Phys. Med. Biol. 51, 2633–2670 (2006)

  77. Dž. Belkić, Exponential convergence rate of the FPT for exact quantification in magnetic resonance spectroscopy. Phys. Med. Biol. 51, 6483–6512 (2006)

  78. Dž. Belkić, K. Belkić, In vivo magnetic resonance spectroscopy by the fast Padé transform. Phys. Med. Biol. 51, 1049–1075 (2006)

  79. Dž. Belkić, Machine accurate quantification in magnetic resonance spectroscopy. Nucl. Instrum. Methods Phys. Res. A 580, 1034–1040 (2007)

  80. Dž. Belkić, K. Belkić, Mathematical modeling of an NMR chemistry problem in ovarian cancer diagnostics. J. Math. Chem. 43, 395–425 (2008)

  81. Dž. Belkić, K. Belkić, Exact quantification of time signals from magnetic resonance spectroscopy by the fast Padé transform with applications to breast cancer diagnostics. J. Math. Chem. 45, 790–818 (2009)

  82. Dž. Belkić, K. Belkić, Unequivocal resolution of multiplets in MR spectra for prostate cancer diagnostics achieved by the fast Padé transform. J. Math. Chem. 45, 819–858 (2009)

  83. Dž. Belkić, K. Belkić, The potential for practical improvements in cancer diagnostics by mathematically-optimized magnetic resonance spectroscopy. J. Math. Chem. 49, 2408–2440 (2011)

  84. Dž. Belkić, K. Belkić, Molecular imaging and magnetic resonance for improved target definition in radiation oncology, in Radiation Damage to Biomolecular Systems, ed. by G. Gómez, M.C. Fuss (Springer, Berlin, 2012), pp. 411–429

  85. Dž. Belkić, K. Belkić, Magnetic resonance spectroscopy with high-resolution and exact quantification in the presence of noise for improving ovarian cancer detection. J. Math. Chem. 50, 2559–2576 (2012)

  86. Dž. Belkić, K. Belkić, Resolution enhancement as a key step towards clinical implementation of Padé-optimized magnetic resonance spectroscopy for diagnostic oncology. J. Math. Chem. 51, 2608–2637 (2013)

  87. Dž. Belkić, K. Belkić, Padé-optimization of noise-corrupted magnetic resonance spectroscopic time signals from fibroadenoma of the breast. J. Math. Chem. 52, 2680–2713 (2014); see also: Dž. Belkić and K. Belkić, Mathematically-optimized magnetic resonance spectroscopy in breast cancer diagnostics: implications for personalized cancer medicine. J. Math. Chem. 54, 186–230 (2016)

  88. Dž. Belkić, K. Belkić, Optimized spectral analysis in magnetic resonance spectroscopy for early tumor diagnostics. J. Phys. Conf. Ser. 565, 012002 (2014). doi:10.1088/1742-6596/565/1/012002

  89. Dž. Belkić, K. Belkić, Proof-of-the-concept study on mathematically optimized magnetic resonance spectroscopy for breast cancer diagnostics. Technol. Cancer Res. Treat. 14, 277–297 (2015)

  90. Dž. Belkić, K. Belkić, Strategic steps for advanced molecular imaging with magnetic resonance-based diagnostic modalities. Technol. Cancer Res. Treat. 14, 119–142 (2015)

  91. Dž. Belkić, K. Belkić, Unequivocal disentangling genuine from spurious information in time signals: clinical relevance in cancer diagnostics through magnetic resonance spectroscopy. J. Math. Chem. 44, 884–912 (2008)

  92. Dž. Belkić, Exact signal-noise separation by Froissart doublets in the fast Padé transform for MRS. Adv. Quantum Chem. 56, 95–179 (2009)

  93. Dž. Belkić, Analytical continuation by numerical means in spectral analysis using the fast Padé transform (FPT). Nucl. Instrum. Methods Phys. Res. A 525, 372–378 (2004)

  94. Dž. Belkić, K. Belkić, How the fast Padé transform handles noise for MRS data from the ovary: implications for ovarian cancer diagnostics. J. Math. Chem. 54, 149–185 (2016)

  95. L. Vanhamme, A. van den Boogaart, S. van Haffel, Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J. Magn. Reson. 129, 35–43 (1997)

    Article  CAS  Google Scholar 

  96. S.W. Provencher, Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679 (1993)

    Article  CAS  Google Scholar 

  97. Dž. Belkić, K. Belkić, The general concept of signal-noise separation (SNS): mathematical aspects and implementation in magnetic resonance spectroscopy. J. Math. Chem. 45, 563–597 (2009); see also: Dž. Belkić and K. Belkić, Quantification by the fast Padé transform of magnetic resonance spectroscopic data encoded at 1.5 T: implications for brain tumor diagnostics. J. Math. Chem. 54, 602–655 (2016)

  98. A.R. Cabrera, F.V. Coakley, A.C. Westphalen, Y. Lu, S. Zhao, K. Shinohara, P.R. Carroll, J. Kurhanewicz, Prostate cancer: is in-apparent tumor at endorectal MR and MR spectroscopic imaging a favorable prognostic finding in patients who select active surveillance? Radiology 247, 444–450 (2008)

    Article  Google Scholar 

  99. D. Bonekamp, S. Bonekamp, J.K. Mullins, J.I. Epstein Carter, H. Ballentine, K.J. Macura, Multiparametric magnetic resonance imaging characterization of prostate lesions in the active surveillance population: incremental value of magnetic resonance imaging for prediction of disease reclassification. J. Comput. Assist. Tomogr. 37, 948–956 (2013)

    Article  Google Scholar 

  100. A. Shukla-Dave, H. Hricak, O. Akin, C. Yu, K. Zakian, K. Udo, P. Scardino, J. Eastham, M. Kattan, Preoperative nomograms incorporating magnetic resonance imaging and spectroscopy for prediction of insignificant prostate cancer. Br. J. Urol. Int. 109, 1315–1322 (2011)

    Article  Google Scholar 

  101. A. Shukla-Dave, H. Hricak, P.T. Scardino, Imaging low-risk prostate cancer. Curr. Opin. Urol. 18, 78–86 (2008)

    Article  Google Scholar 

  102. T. Kobus, P. Vos, T. Hambrock, M. De Rooij, C. Hulsbergen-Van de Kaa, J. Barentsz, A. Heerschap, T. Scheenen, Prostate cancer aggressiveness: in vivo assessment of MR spectroscopy and diffusion-weighted imaging at 3 T. Radiology 265, 457–467 (2012)

    Article  Google Scholar 

  103. L. Boesen, E. Chabanova, V. Løgager, I. Balslev, K. Mikines, H.S. Thomsen, Prostate cancer staging with extracapsular extension risk scoring using multiparametric MRI: a correlation with histopathology. Eur. Radiol. 25, 1776–1785 (2015)

    Article  Google Scholar 

  104. J. Pouliot, Y. Kim, E. Lessard, I.C. Hsu, D.B. Vigneron, J. Kurhanewicz, Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging. Int. J. Radiat. Oncol. Biol. Phys. 59, 1196–1207 (2004)

    Article  Google Scholar 

  105. M. Zaider, M.J. Zelefsky, E.K. Lee et al., Treatment planning for prostate implants using magnetic resonance spectroscopic imaging. Int. J. Radiat. Oncol. Biol. Phys. 47, 1085–1096 (2000)

    Article  CAS  Google Scholar 

  106. B. Pickett, J. Kurhanewicz, J. Pouliot, V. Weinberg, K. Shinohara, F. Coakley, M. Roach, Three-dimensional conformal external beam radiotherapy compared with permanent prostate implantation in low-risk prostate cancer based on endorectal magnetic resonance spectroscopy imaging and prostate-specific antigen level. Int. J. Radiat. Oncol. Biol. Phys. 65, 65–72 (2006)

    Article  CAS  Google Scholar 

  107. U.G. Mueller-Lisse, M.G. Swanson, D.B. Vigneron, H. Hricak, A. Bessette, R.G. Males, P.J. Wood, S. Noworolski, S.J. Nelson, I. Barken, P.R. Carroll, J. Kurhanewicz, Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonance imaging and 3D magnetic resonance spectroscopic imaging. Magn. Reson. Med. 46, 49–57 (2001)

    Article  CAS  Google Scholar 

  108. A.C. Westphalen, G.D. Reed, Phillip P. Vinh, C. Sotto, D.B. Vigneron, J. Kurhanewicz, Multiparametric 3T endorectal MRI after external beam radiation therapy for prostate cancer. J. Magn. Reson. Imaging 36, 430–437 (2012)

    Article  Google Scholar 

  109. E. Arrayeh, A.C. Westphalen, J. Kurhanewicz, M. Roach, A.J. Jung, P.R. Carroll, F.V. Coakley, Does local recurrence of prostate cancer after radiation therapy occur at the site of primary tumor? Results of a longitudinal MRI and MRSI study. Int. J. Radiat. Oncol. Biol. Phys. 82, e787e–e793 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by King Gustaf the 5th Jubilee Fund, Cancerfonden, the Karolinska Institute Research Fund and FoUU through Stockholm County Council to which the authors are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dževad Belkić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkić, D., Belkić, K. The fast Padé transform for noisy magnetic resonance spectroscopic data from the prostate: potential contribution to individualized prostate cancer care. J Math Chem 54, 707–764 (2016). https://doi.org/10.1007/s10910-015-0586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0586-3

Keywords

Navigation