Skip to main content
Log in

Sparse and nonnegative sparse D-MORPH regression

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

An underdetermined linear algebraic equation system \(\mathbf{y}={\varvec{\Phi }}\mathbf{x}\), where \({\varvec{\Phi }}\) is an \(m\times n (m<n)\) rectangular constant matrix with rank \(r\le m\) and \(\mathbf{y}\in \mathrm {Ran}({\varvec{\Phi }})\) (range of \({\varvec{\Phi }})\), has an infinite number of solutions. Diffeomorphic modulation under observable response preserving homotopy (D-MORPH) regression seeks a solution satisfying the extra requirement of minimizing a chosen cost function, \({\mathcal {K}}\). A wide variety of choices of the cost function makes it possible to achieve diverse goals, and hence D-MORPH regression has been successfully applied to solve a range of problems. In this paper, D-MORPH regression is extended to determine a sparse or a nonnegative sparse solution of the vector \(\mathbf{x}\). For this purpose, recursive reweighted least-squares (RRLS) minimization is adopted and modified to construct the cost function \({\mathcal {K}}\) for D-MORPH regression. The advantage of sparse and nonnegative sparse D-MORPH regression is that the matrix \({\varvec{\Phi }}\) does not need to have row-full rank, thereby enabling flexibility to search for sparse solutions \(\mathbf{x}\) with ancillary properties in practical applications. These tools are applied to (a) simulation data for quantum-control-mechanism identification utilizing high dimensional model representation (HDMR) modeling and (b) experimental mass spectral data for determining the composition of an unknown mixture of chemical species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Daubechies, R. Devore, M. Fornasier, C.S. Güntürk, Commun. Pure Appl. Math. LXIII, 0001–0038 (2010)

    Article  Google Scholar 

  2. A.E. Yagle, Non-iterative reweighted-norm least-squares local \(\ell _0\) minimization for sparse solutions to underdetermined linear system of equations, http://web.eecs.umich.edu/~aey/sparse/sparse11.pdf

  3. K. Mohan, M. Fazel, J. Mach. Learn. Res. 13, 3441–3473 (2012)

    Google Scholar 

  4. M. Fornasier, H. Rauhut, R. Ward, Low-rank matrix recovery via iteratively reweighted least squares minimization, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.8001

  5. H. Firouzi, M. Farivar, M. Babaie-Zadeh, C. Jutten, Approximate sparse decomposition based on smoothed \(\ell _0\)-Norm, http://arxiv.org/pdf/0811.2868

  6. R.G. Baraniuk, Compressive sensing [Lecture Notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  7. E.J. Candés, Compressive Sampling, in International Congress of Mathematicians, Vol. III, pp. 1433–1452 (2006). European Mathematical Society, Zürich

  8. D.L. Donoho, Y. Tsaig, IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)

    Article  Google Scholar 

  9. Y. Li, SIAM J. Optim. 3(3), 609–629 (1993)

    Article  Google Scholar 

  10. H. Rabitz, O.F. Alis, J. Math. Chem. 25, 197–233 (1999)

    Article  CAS  Google Scholar 

  11. G. Li, C. Rosenthal, H. Rabitz, J. Phys. Chem. A 105(33), 7765–7777 (2001)

    Article  CAS  Google Scholar 

  12. G. Li, H. Rabitz, J. Math. Chem. 50, 99–130 (2012)

    Article  Google Scholar 

  13. G. Li, H. Rabitz, J. Math. Chem. 48, 1010–1035 (2010)

    Article  CAS  Google Scholar 

  14. G. Li, R. Rey-de-Castro, H. Rabitz, J. Math. Chem. 50, 1747–1764 (2012)

    Article  CAS  Google Scholar 

  15. G. Li, C. Bastian, W. Welsh, H. Rabitz, J. Phys. Chem. A (in press)

  16. C.R. Rao, S.K. Mitra, Generalized Inverse of Matrix and Its Applications (Willey, New York, 1971)

    Google Scholar 

  17. F.I. Kushnirskii, M.E. Primak, Regression with nonnegative coefficients. Kibernetika (Russian) 1, 151–152 (1973)

    Google Scholar 

  18. C. Brif, R. Chakrabarti, H. Rabitz, Adv. Chem. Phys. 148, 1 (2012)

    CAS  Google Scholar 

  19. R.S. Judson, H. Rabitz, Phys. Rev. Lett. 68(10), 1500–1503 (1992)

    Article  CAS  Google Scholar 

  20. A. Mitra, H. Rabitz, Phys. Rev. A 67(3), 33407 (2003)

    Article  Google Scholar 

  21. R. Rey-de-Castro, H. Rabitz, Phys. Rev. A 81, 063422 (2010)

    Article  Google Scholar 

  22. R. Rey-de-Castro, Z. Leghtas, H. Rabitz, Phys. Rev. Lett. 110, 223601 (2013)

    Article  Google Scholar 

  23. G. Li, H. Rabitz, J. Math. Chem. 52, 2052–2073 (2014)

    Article  CAS  Google Scholar 

  24. G. Li et al., J. Phys. Chem. A 114, 6022–6032 (2010)

    Article  CAS  Google Scholar 

  25. N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform. IEEE Trans. Comput. C23(1), 90–93 (1974)

    Article  Google Scholar 

  26. http://www.knowitall.com/

Download references

Acknowledgments

Support for this work was provided by ONR with Account Number N00014-11-1-0716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herschel Rabitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Rey-de-Castro, R., Xing, X. et al. Sparse and nonnegative sparse D-MORPH regression. J Math Chem 53, 1885–1914 (2015). https://doi.org/10.1007/s10910-015-0527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0527-1

Keywords

Navigation