Skip to main content
Log in

Computer modeling of synthesis of strontium stannates at high temperatures

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In our previous papers (Mackevičius et al. in Cent Eur J Chem 10(2):380–385, 2012; J Math Chem 50(8):2291–2302, 2012; J Math Chem 51(5):1249–1257, 2013), we presented a method for estimation of the diffusion and reaction rates of synthesis at high temperatures using limited information, such as synthesis time and dimensions of reactants, from real laboratory experiments. In this paper, we extend the method to the case where particles of two reactants react with the gas environment and apply it to the case of synthesis of strontium stannate \(\mathrm{Sr}\mathrm{Sn}\mathrm{O}_{3}\). The synthesis is modeled by a reaction–diffusion system describing the dynamics of the concentrations of reactants and product in an appropriately constructed synthesis space. Solving in the latter an inverse modeling problem, we obtain explicit formulas for the diffusion coefficient and reaction rate as functions of temperature by calculating the activation energies and other parameters of synthesis. Our approach also allows us to explain why we have different reactions at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Numerical experiments in [2] showed that the results of this type models in the two- and three-dimensional cases are similar.

References

  1. M. Mackevičius, F. Ivanauskas, A. Kareiva, Mathematical approach to investigation of synthesis processes at high temperatures. Cent. Eur. J. Chem. 10(2), 380–385 (2012)

    Article  Google Scholar 

  2. M. Mackevičius, F. Ivanauskas, A. Kareiva, D. Jasaitis, A closer look at the computer modeling and sintering optimization in the preparation of YAG. J. Math. Chem. 50(8), 2291–2302 (2012)

    Article  Google Scholar 

  3. M. Mackevičius, F. Ivanauskas, A. Kareiva, I. Bogdanovičienė, Computer modeling of synthesis of calcium hydroxyapatite (CHAp). J. Math. Chem. 51(5), 1249–1257 (2013)

    Article  Google Scholar 

  4. M.K. Singh, J.W. Hong, N.K. Karan, H.M. Jang, R.S. Katiyar, S.A.T. Redfern, J.F. Scott, New cryogenic phase transitions in SrSnO\(_{3}\). J. Phys. Condens. Matter 22(9), 095901 (2010)

    Article  Google Scholar 

  5. P. Singh, B.J. Brandenburg, C.P. Sebastian, S. Singh, D. Kumar, O. Parkash, Electronic structure, electrical and dielectric properties of BaSnO\(_{3}\) below 300 K. Jpn. J. Appl. Phys. 47, 3540–3545 (2008)

    Article  CAS  Google Scholar 

  6. S.W. Tao, F. Gao, X.Q. Liu, O.T. Sorensen, Ethanol-sensing characteristics of barium stannate prepared by chemical precipitation. Sens. Actuator B Chem. 71, 223–227 (2000)

    Article  CAS  Google Scholar 

  7. J. Cerda, J. Arbiol, G. Dezanneau, R. Diaz, J.R. Morante, Perovskite-type BaSnO\(_{3}\) powders for high temperature gas sensor applications. Sens. Actuator B Chem. 84, 21–25 (2002)

    Article  CAS  Google Scholar 

  8. H. Cheng, Z.G. Lu, Synthesis and gas-sensing properties of CaSnO\(_{3}\) microcubes. Solid State Sci. 10, 1042–1048 (2008)

    Article  CAS  Google Scholar 

  9. N. Sharma, K.M. Shaju, G.V.S. Rao, B.V.R. Chowdari, Anodic behaviour and X-ray photoelectron spectroscopy of ternary tin oxides. J. Power Sources 139, 250–260 (2005)

    Article  CAS  Google Scholar 

  10. Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Studies on nano-CaO center dot SnO\(_{2}\) and nano-CaSnO\(_{3}\) as anodes for Li-ion batteries. Chem. Mater. 20, 6829–6839 (2008)

    Article  CAS  Google Scholar 

  11. S. Zhao, Y. Bai, W.F. Zhang, Electrochemical performance of flowerlike CaSnO\(_{3}\) as high capacity anode material for lithium-ion batteries. Electrochim. Acta 55(12), 3891–3896 (2010)

    Article  CAS  Google Scholar 

  12. C. Li, Y.Q. Zhu, S.M. Fang, H.X. Wang, Y.H. Gui, L. Bi, R.F. Chen, Preparation and characterization of SrSnO\(_{3}\) nanorods. J. Phys. Chem. Solids 72, 869–874 (2011)

    Article  CAS  Google Scholar 

  13. M. Mouyane, M. Womes, J.C. Jumas, J. Olivier-Fourcade, P.E. Lippens, Original electrochemical mechanisms of CaSnO\(_{3}\) and CaSnSiO\(_{5}\) as anode materials for Li-ion batteries. J. Solid State Chem. 184(11), 2877–2886 (2011)

    Article  CAS  Google Scholar 

  14. P.H. Borse, J.S. Lee, H.G. Kim, Theoretical band energetics of Ba(M\(_{0.5}\)Sn\(_{0.5}\))O\(_{3}\) for solar photoactive applications. J. Appl. Phys. 100, 124915 (2006)

    Article  Google Scholar 

  15. P.H. Borse, U.A. Joshi, S.M. Ji, J.S. Jang, J.S. Lee, E.D. Jeong, H.G. Kim, Band gap tuning of lead-substituted BaSnO\(_{3}\) for visible light photocatalysis. Appl. Phys. Lett. 90, 034103 (2007)

    Article  Google Scholar 

  16. Y.P. Yuan, J. Lv, X.J. Jiang, Z.S. Li, T. Yu, Z.G. Zou, J.H. Ye, Large impact of strontium substitution on photocatalytic water splitting activity of BaSnO\(_{3}\). Appl. Phys. Lett. 91, 094107 (2007)

    Article  Google Scholar 

  17. C.W. Lee, D.W. Kim, I.S. Cho, S. Park, S.S. Shin, S.W. Seo, K.S. Hong, Simple synthesis and characterization of SrSnO\(_{3}\) nanoparticles with enhanced photocatalytic activity. Int. J. Hydr. Energy 37(14), 10557–10563 (2012)

    Article  CAS  Google Scholar 

  18. W.F. Zhang, J.W. Tang, J.H. Ye, Photoluminescence and photocatalytic properties of SrSnO\(_{3}\) perovskite. Chem. Phys. Lett. 418, 174–178 (2006)

    Article  CAS  Google Scholar 

  19. D. Chen, J.H. Ye, SrSnO\(_{3}\) nanostructures: synthesis, characterization, and photocatalytic properties. Chem. Mater. 19, 4585–4591 (2007)

    Article  CAS  Google Scholar 

  20. B. Bellal, B. Hadjarab, A. Bouguelia, M. Trari, Visible light photocatalytic reduction of water using SrSnO\(_{3}\) sensitized by CuFeO\(_{2}\). Theor. Exp. Chem. 45, 172–179 (2009)

    Article  CAS  Google Scholar 

  21. H.M. Yang, J. Shi, M.L. Gong, A novel red emitting phosphor Ca\(_{2}\)SnO\(_4\) : Eu\(^{3+}\). J. Solid State Chem. 178, 917–920 (2005)

    Article  CAS  Google Scholar 

  22. Y.C. Chen, Y.H. Chang, B.S. Tsai, Influence of processing conditions on synthesis and photoluminescence of Eu3+-activated strontium stannate phosphors. J. Alloys Compd. 398(1–2), 256–260 (2005)

    Article  CAS  Google Scholar 

  23. H. Gao, Y.H. Wang, Photoluminescence of Eu\(^{3+}\) activated Ba\(_{2}\)SnO\(_{4}\) under ultraviolet-vacuum ultraviolet excitation. J. Mater. Res. 21, 1857–1861 (2006)

    Article  CAS  Google Scholar 

  24. B.F. Lei, H.R. Zhang, W.J. Mai, S. Yue, Y.L. Liu, S.Q. Man, Luminescent properties of orange-emitting long-lasting phosphorescence phosphor Ca\(_{2}\)SnO\(_{4}\) : Sm\(^{3+}\). Solid State Sci. 13, 525–528 (2011)

    Article  CAS  Google Scholar 

  25. X. Yu, X.H. Xu, J.B. Qiu, Enhanced long persistence of Sr\(_{2}\)SnO\(_{4}\): Sm\(^{3+}\) red phosphor by codoping with Dy\(^{3+}\). Mater. Res. Bull. 46, 627–629 (2011)

    Article  CAS  Google Scholar 

  26. X. Yu, X.H. Xu, S.Y. Xin, J.B. Qiu, Observation of energy transfer from host to rare-earth ions in Ca\(_{2}\)SnO\(_{4}\) : Pr\(^{3+}\) phosphor. J. Am. Ceram. Soc. 94, 985–987 (2011)

    Article  CAS  Google Scholar 

  27. A. Stanulis, S. Sakirzanovas, M. Van Bael, A. Kareiva, Sol-gel (combustion) synthesis and characterization of different alkaline earth metal (Ca, Sr, Ba) stannates. J. Sol–Gel Sci. Technol. 64(3), 643–652 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Project “Theoretical and engineering aspects of e-service technology development and application in high-performance computing platforms” (No. VP1-3.1-ŠMM-08-K-01-010) funded by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mažvydas Mackevičius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackevičius, M., Ivanauskas, F., Kareiva, A. et al. Computer modeling of synthesis of strontium stannates at high temperatures. J Math Chem 53, 1227–1238 (2015). https://doi.org/10.1007/s10910-015-0483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0483-9

Keywords

Navigation