Skip to main content
Log in

An efficient approach for solving the HP protein folding problem based on UEGO

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This work applies the methodology of the Universal Evolutionary Global Optimization, UEGO, to solve the protein structure optimization problem based on the HP model. The UEGO algorithm was initially designed to solve problems whose solutions were codified as real vectors. However, in this work the HP protein folding solutions have been defined as means of conformations encoded by relative coordinates. Consequently several main concepts in UEGO have been re-defined, i.e. the representation of a solution, the distance concept, the computation of a middle point, etc. In addition, a new efficient local optimizer has been designed based on the characteristics of the protein model. This work develops the adaptation and implementation of UEGO to the HP model and analyzes the UEGO solutions of HP protein folding for different 3D problems. Finally, obtained HP solutions are converted into all-atom models so that comparison with real proteins can be carried out, and a good agreement is obtained for small size proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Arkhangel’skii, General Topology I: Basic Concepts and Constructions Dimension Theory (Encyclopaedia of Mathematical Sciences) (Springer, Berlin, 2011)

    Google Scholar 

  2. A. Arrondo, J. Fernández, J. Redondo, P. Ortigosa, An approach for solving competitive location problems with variable demand using multicore systems. Optim. Lett. 8, 555–567 (2013)

  3. R. Backofen, S. Will, A constraint-based approach to fast and exact structure prediction in three-dimensional protein models. Constraints 11(1), 5–30 (2006)

    Article  Google Scholar 

  4. B. Berger, T. Leighton, Protein folding in the hydrophobic–hydrophilic (hp) model is np-complete. J. Comput. Biol. 5(1), 27–40 (1998). doi:10.1089/cmb.1998.5.27

  5. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  CAS  Google Scholar 

  6. T.N. Bui, G. Sundarraj, An efficient genetic algorithm for predicting protein tertiary structures in the 2D hp model, in Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO ’05 ACM, (New York, NY, USA, 2005), pp. 385–392

  7. F. Custodio, H. Barbosa, L. Dardenne, Investigation of the threedimensional lattice HP protein folding model using a genetic algorithm. Genet. Mol. Biol. 27(4), 611–615 (2004)

    Article  CAS  Google Scholar 

  8. W.L. DeLano, The PyMOL Molecular Graphics System (DeLano Scientific LLC, San Carlos, CA, 2002)

  9. K.A. Dill, S. Bromberg, K. Yue, H.S. Chan, K.M. Ftebig, D.P. Yee, P.D. Thomas, Principles of protein folding a perspective from simple exact models. Protein Sci. 4(4), 561–602 (1995)

    Article  CAS  Google Scholar 

  10. K.A. Dill, J.L. MacCallum, The protein-folding problem, 50 years on. Science 338(6110), 1042–1046 (2012)

    Article  CAS  Google Scholar 

  11. S. Fidanova, I. Lirkov, Ant colony system approach for protein folding. in IMCSIT, pp. 887–891. IEEE (2008)

  12. J. García-Martínez, E. Garzón, P. Ortigosa, A GPU implementation of a hybrid evolutionary algorithm: GPuEGO. J. Supercomput. 1–12 (2014). doi:10.1007/s11227-014-1136-7

  13. T.A. Halgren, Merck molecular force field. i. basis, form, scope, parameterization, and performance of mmff94. J. Comput. Chem. 17(5–6), 490–519 (1996)

    Article  CAS  Google Scholar 

  14. M. Jelásity, P. Ortigosa, I. García, UEGO, an abstract clustering technique for multimodal global optimization. J. Heuristics 7(3), 215–233 (2001)

    Article  Google Scholar 

  15. F. Khatib, S. Cooper, D. Tyka, All: Algorithm discovery by protein folding game players. PNAS 108 (47) (2011). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223433/pdf/pnas.1115898108

  16. I. Kondov, Protein structure prediction using distributed parallel particle swarm optimization. Nat. Comput. 12(1), 29–41 (2013)

    Article  CAS  Google Scholar 

  17. C. Lin, S. Su, Protein 3D hp model folding simulation using a hybrid of genetic algorithm and particle swarm optimization. Int. J. Fuzzy Syst. 13(2), 140–147 (2011)

    Google Scholar 

  18. J. Liu, G. Li, J. Yu, Y. Yao, Heuristic energy landscape paving for protein folding problem in the three-dimensional HP lattice model. Comput. Biol. Chem. 38, 17–26 (2012)

    Article  Google Scholar 

  19. P. Ortigosa, I. García, M. Jelásity, Reliability and performance of UEGO, a clustering-based global optimizer. J. Global Optim. 19(3), 265–289 (2001)

    Article  Google Scholar 

  20. P. Ortigosa, J. Redondo, I. García, J. Fernández, A population global optimization algorithm to solve the image alignment problem in electron crystallography. J. Global Optim. 37(4), 527–539 (2007)

    Article  Google Scholar 

  21. S. Ozkan, G.A. W., J. Chodera, K. Dill, Protein folding by zipping and assembly. PNAS 104 (29) (2007). http://www.pnas.org/content/104/29/11987.full+html?with-ds=yes

  22. J. Peña, J. Cecilia, H. Pérez-Sánchez, Application of ant colony optimization in a hybrid coarse-grained and all-atom based protein structure prediction strategy. in 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2013, pp. 1154–1156 (2013)

  23. J. Redondo, J. Fernández, A. Arrondo, I. García, P. Ortigosa, Fixed or variable demand? Does it matter when locating a facility? Omega 40(1), 9–20 (2012)

    Article  Google Scholar 

  24. J. Redondo, J. Fernández, A. Arrondo, I. García, P. Ortigosa, A two-level evolutionary algorithm for solving the facility location and design (\(1|1\))-centroid problem on the plane with variable demand. J. Global Optim. 56(3), 983–1005 (2013)

    Article  Google Scholar 

  25. J. Redondo, J. Fernández, I. García, P. Ortigosa, Parallel algorithms for continuous competitive location problems. Optim. Methods Softw. 23(5), 779–791 (2008)

    Article  Google Scholar 

  26. J. Redondo, J. Fernández, I. García, P. Ortigosa, A robust and efficient global optimization algorithm for planar competitive location problems. Ann. Oper. Res. 167, 87–106 (2009)

    Article  Google Scholar 

  27. P. Rotkiewicz, J. Skolnick, Fast procedure for reconstruction of full-atom protein models from reduced representations. J. Comput. Chem. 29(9), 1460–1465 (2008)

    Article  CAS  Google Scholar 

  28. A. Schug, W. Wenzel, An evolutionary strategy for all-atom folding of the 60-amino-acid bacterial ribosomal protein L20. Biophys. J. 90(12), 4273–4280 (2006)

    Article  CAS  Google Scholar 

  29. A. Shmygelska, R. Aguirre-Hernndez, H.H. Hoos, An ant colony optimization algorithm for the 2D hp protein folding problem. in Proceedings of the 16th Canadian Conference Artificial Intelligence, (Springer, 2002), pp. 400–417

  30. T. Strunk, M. Wolf, W. Wenzel, Peptide structure prediction using distributed volunteer computing networks. J. Math. Chem. 50(2), 421–428 (2012)

    Article  CAS  Google Scholar 

  31. R., Unger, J. Moult, A genetic algorithm for 3D protein folding simulations. in Proceedings of the Fifth Annual International Conference on Genetic Algorithms, (Kaufmann, San Francisco, 1993) , p. 581–588

  32. R. Unger, J. Moult, Genetic algorithms for protein folding simulations. J. Mol. Biol. 231(1), 75–81 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by grants from the Spanish Ministry of Science and Innovation (TIN2012-37483-C03-03), Junta de Andalucía (P10-TIC-6002 and P12-TIC301), Fundación Séneca (The Agency of Science and Technology of the Region of Murcia, 00003/CS/10, 15254/PI/10 and 18946/JLI/13) and by the Nils Coordinated Mobility under Grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Ortigosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Martínez, J.M., Garzón, E.M., Cecilia, J.M. et al. An efficient approach for solving the HP protein folding problem based on UEGO. J Math Chem 53, 794–806 (2015). https://doi.org/10.1007/s10910-014-0459-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0459-1

Keywords

Navigation