Skip to main content
Log in

Solving for the time-dependent multi-configuration hartree fock equations based on sine-discrete variable representation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A parallel quantum electrons wave packet computer code has been developed to study laser-atom interaction in the nonperturbative regime with attosecond resolution. The motion equations of the multi-configuration time-dependent hartree fock (MCTDHF) based on a sine discrete variable representation were solved by using an adaptive stepsize Runge-Kutta integrator of eight orders. Some efficient algorithms and strategies to accelerate the calculation velocity are introduced and discussed in details. Some illustrated imaginary time propagation and real time propagation have been respectively done in the paper. Single ionization probabilities calculated by using this one dimension MCTDHF model underestimate the accurate results calculated by solving time-dependent Schrodinger equation directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  CAS  Google Scholar 

  2. F. Calvayrac, P.G. Reinhard, E. Suraud, C.A. Ullrich, Phys. Rep. 337, 493 (2000)

    Article  CAS  Google Scholar 

  3. K.C. Kulander, Phys. Rev. A 36, 2726 (1987)

    Article  CAS  Google Scholar 

  4. M.S. Pindzola, P. Gavras, T.W. Gorczyca, Phys. Rev. A 51, 3999 (1995)

    Article  CAS  Google Scholar 

  5. T. Klamroth, Phys. Rev. B 68, 245421 (2003)

    Article  Google Scholar 

  6. J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec, A. Scrinzi, Laser Phys. 13, 1064 (2003)

    Google Scholar 

  7. J. Zanghellini, M. Kitzler, T. Brabec, A. Scrnzi, J. Phys. B At. Mol. Opt. Phys. 37, 763 (2004)

    Article  CAS  Google Scholar 

  8. J. Caillat, J. Zhanghellini, M. Kitzler, O. Koch, W. Kreuzer, A. Scrinzi, Phys. Rev. A 71, 012712 (2005)

    Article  Google Scholar 

  9. T. Kato, H. Kono, Chem. Phys. Lett. 392, 533 (2004)

    Article  CAS  Google Scholar 

  10. T. Kato, Kaoru Yamanouchi, J. Chem. Phys. 131, 164118 (2009)

    Article  Google Scholar 

  11. M. Nest, T. Klamroth, P. Saalfrank, J. Chem. Phys. 122, 124102 (2005)

    Article  CAS  Google Scholar 

  12. M. Nest, T. Klamroth, Phys. Rev. A 72, 012710 (2005)

    Article  Google Scholar 

  13. M. Nest, J. Theor. Comput. Chem. 6, 563 (2007)

    Article  CAS  Google Scholar 

  14. M. Nest, Phys. Rev. A 73, 023613 (2006)

    Article  Google Scholar 

  15. M. Nest, R. Padmanaban, P. Saalfrank, J. Chem. Phys. 126, 214106 (2007)

    Article  CAS  Google Scholar 

  16. H.D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990)

    Article  CAS  Google Scholar 

  17. M.H. Beck, A. Jackle, G.A. Worth, H.D. Meyer, Phys. Rep. 324, 1 (2000)

    Article  CAS  Google Scholar 

  18. M. Nest, H.D. Meyer, J. Chem. Phys. 119, 24 (2003)

    Article  CAS  Google Scholar 

  19. H.D. Meyer, U. Manthe, L.S. Cederbaum, J. Chem. Phys. 97, 3199 (1992)

    Article  Google Scholar 

  20. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Phy. Rev. A 76, 062501 (2007)

    Article  Google Scholar 

  21. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, J. Chem. Phys. 127, 154103 (2007)

    Article  Google Scholar 

  22. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Phy. Rev. A 77, 033613 (2008)

    Article  Google Scholar 

  23. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Phys. Rev. A 79, 022503 (2009)

    Article  Google Scholar 

  24. A.I. Streltsov, K. Sakmann, O.E. Alon, L.S. Cederbaum, Phys. Rev. A 83, 043604 (2011)

    Article  Google Scholar 

  25. D. Hochstuhl, M. Bonitz, J. Chem. Phys. 134, 084106 (2011)

    Article  Google Scholar 

  26. W.L. Li, W.W. Xu, Mol. Phys. 111, 119 (2013)

    Google Scholar 

  27. W.L. Li, W.W. Xu, K.L. Han, J. Theor. Comput. Chem. 12, 1250105 (2013)

    Google Scholar 

  28. A. Szabo, N.S. Ostlund, Modern quantum chemistry, introduction to advanced electronic structure theory, Mineola, New York. 1996, 1–466

  29. T. Birkeland, R. Nepstad, M. Førre, Phys. Rev. Lett. 104, 163002 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W. Solving for the time-dependent multi-configuration hartree fock equations based on sine-discrete variable representation. J Math Chem 51, 1521–1531 (2013). https://doi.org/10.1007/s10910-013-0161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0161-8

Keywords

Navigation