Skip to main content
Log in

A numerical characteristic method for probability generating functions on stochastic first-order reaction networks

Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We propose an efficient and accurate numerical scheme for solving probability generating functions arising in stochastic models of general first-order reaction networks by using the characteristic curves. A partial differential equation derived by a probability generating function is the transport equation with variable coefficients. We apply the idea of characteristics for the estimation of statistical measures, consisting of the mean, variance, and marginal probability. Estimation accuracy is obtained by the Newton formulas for the finite difference and time accuracy is obtained by applying the fourth order Runge–Kutta scheme for the characteristic curve and the Simpson method for the integration on the curve. We apply our proposed method to motivating biological examples and show the accuracy by comparing simulation results from the characteristic method with those from the stochastic simulation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Rao C.V., Wolf M.W., Arkin A.P.: Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002)

    Article  CAS  Google Scholar 

  2. Gillespie D.T.: A rigorous derivation of the chemical master equation. Phys. A 188, 404–425 (1992)

    Article  CAS  Google Scholar 

  3. Thattai M., van Oudenaarden A.: Intrinsic noise in gene regulatory networks. Proc. Nat. Acad. Sci. 98, 8614 (2001)

    Article  CAS  Google Scholar 

  4. Gadgil C., Lee C.H., Othmer H.G.: A stochastic analysis of first-order reaction networks. Bull. Math. Biol. 67, 901–946 (2005)

    Article  CAS  Google Scholar 

  5. Jahnke T., Huisinga W.: Solving the chemical master equation for monomolecular reaction systems analytically. J. Math. Biol. 54, 1–26 (2007)

    Article  Google Scholar 

  6. Gillespie D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  CAS  Google Scholar 

  7. Gillespie D.T.: Exact simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  CAS  Google Scholar 

  8. Higham D.J.: Modeling and simulating chemical reactions. SIAM Rev. 50(2), 347–368 (2008)

    Article  Google Scholar 

  9. Gibson M., Bruck J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104, 1876–1889 (2000)

    Article  CAS  Google Scholar 

  10. Gillespie D.T.: The chemical Langevin equation. J. Chem. Phys. 113, 297–306 (2000)

    Article  CAS  Google Scholar 

  11. Gillespie D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716–1733 (2001)

    Article  CAS  Google Scholar 

  12. Haseltine E.L., Rawlings J.B.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117, 6959 (2002)

    Article  CAS  Google Scholar 

  13. Rao C.V., Arkin A.P.: Stochastic chemical kinetics and the quasi-steady- state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118, 4999 (2003)

    Article  CAS  Google Scholar 

  14. Cao Y., Gillespie D.T., Petzold L.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122, 014116 (2005)

    Article  Google Scholar 

  15. Goutsias J.: Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122, 184102 (2005)

    Article  Google Scholar 

  16. Salis H., Kaznessis Y.: Accurate hybrid stochastic simulation of coupled chemical or biochemical reactions. J. Chem. Phys. 122, 0541031 (2005)

    Article  Google Scholar 

  17. Munsky B., Khammash M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044104 (2006)

    Article  Google Scholar 

  18. Weinan E., Liu D., Vanden-Eijnden E.: Nested stochastic simulation algorithm for chemical kinetic systems with multiple time scales. J. Comput. Phys. 221, 158–180 (2007)

    Article  Google Scholar 

  19. Lee C.H., Lui R.: A reduction method for multiple time scale stochastic reaction networks. J. Math. Chem. 46, 1292–1321 (2009)

    Article  CAS  Google Scholar 

  20. Raser J.M., O’Shea E.K.: Control of stochasticity in eukaryotic gene expression. Science 304, 1811 (2004)

    Article  CAS  Google Scholar 

  21. Higham D.J., Khanin R.: Chemical master versus chemical langevin for first-order reaction networks. Open Appl. Math. J. 2, 59–79 (2008)

    Article  Google Scholar 

  22. Intep S., Higham D.J., Mao X.: Switching and diffusion models for gene regulation networks. Multiscale Model Simul. 8(1), 30–45 (2009)

    Article  Google Scholar 

  23. Evans L.C.: Partial Differential Equations, Graduate studies in Mathematics, 2nd edn. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  24. Burden R., Faires J.: Numerical Analysis. Brooks/Cole, Boston (2011)

    Google Scholar 

  25. Neumaier A.: Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.H., Shin, J. & Kim, J. A numerical characteristic method for probability generating functions on stochastic first-order reaction networks. J Math Chem 51, 316–337 (2013). https://doi.org/10.1007/s10910-012-0085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0085-8

Keywords

Navigation