Skip to main content
Log in

Systematic procedure for reduction of kinetic mechanisms of complex chemical processes and its software implementation

Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Feasibility of multidimensional hydrodynamic modeling depends critically on the availability of accurate reduced kinetic mechanisms of physical and chemical processes taking place in the system. Such mechanisms should describe the processes under consideration within a specified error tolerance in the range of initial conditions of interest while keeping the number of species and reactions as small as possible. We have developed an advanced tool for reduction of detailed kinetic mechanisms with a minimal human effort. The tool includes 10 reduction and 2 analysis methods which are based on the results of zero-dimensional modeling. The methods can be combined and applied in sequence. The reduction tool has been implemented as a part the Chemical Workbench computational package and has been tested for a number of large kinetic mechanisms of gas-phase processes. Using this tool, we reduced the mechanism of tar gasification from 177 species and 879 reversible reactions to only 83 species and 278 reactions, while the mechanism of methane combustion initially involving 127 species and 1,206 reactions was reduced to 42 species and 173 reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Xia A.G., Michelangeli D.V.: Atmos. Chem. Phys. 9, 4341 (2009)

    Article  CAS  Google Scholar 

  2. Strelkova M.I., Safonov A.A.: Combust. Sci. Tech. 180, 1788 (2008)

    Article  CAS  Google Scholar 

  3. Cremer M.A., Montgomery C.J., Wang D.H., Heap M.P., Chen J.-Y.: Proc. Combust. Inst. 28, 2427 (2000)

    Article  CAS  Google Scholar 

  4. Shorter J.A., Ip P.C.: J. Phys. Chem. 103, 7192 (1999)

    Article  CAS  Google Scholar 

  5. Singh S., Powers J.M., Paolucci S.: J. Chem. Phys. 117, 1482 (2002)

    Article  CAS  Google Scholar 

  6. Pope S.B.: Combust. Theory Model. 1, 41 (1997)

    Article  CAS  Google Scholar 

  7. Valorani M., Creta F., Donato F., Najm H.N., Goussis D.A.: Proc. Combust. Inst. 31, 483 (2007)

    Article  Google Scholar 

  8. Pepiot-Desjardins P., Pitsch H.: Combust. Flame 154, 67 (2008)

    Article  CAS  Google Scholar 

  9. Vajda S., Valkó P., Turányi T.: Int. J. Chem. Kinet. 17, 55 (1985)

    Article  CAS  Google Scholar 

  10. Chen J.-Y.: Transact. Aeronaut. Astronaut. Soc. Rep. China 33, 59–67 (2001)

    CAS  Google Scholar 

  11. Goussis D.A.: J. Comput. Phys. 128, 261 (1996)

    Article  CAS  Google Scholar 

  12. Valorani M., Creta F.: Combust. Flame 146, 29 (2006)

    Article  CAS  Google Scholar 

  13. Sun W., Chen Z.: Combust. Flame 157, 1298 (2010)

    Article  CAS  Google Scholar 

  14. Massias A., Diamantis D.: Combust. Flame 117, 685 (1999)

    Article  CAS  Google Scholar 

  15. Lu T., Ju Y., Law C.K.: Combust. Flame 126, 1445 (2001)

    Article  CAS  Google Scholar 

  16. Shi Y., Ge H.-W., Brakora J.L., Reitz R.D.: Energy Fuels 24, 1646 (2010)

    Article  CAS  Google Scholar 

  17. Turanyi T.: Comp. Chem. 14, 253 (1990)

    Article  CAS  Google Scholar 

  18. Deminsky M., Chorkov V., Belov G., Cheshigin I., Knizhnik A., Shulakova E., Shulakov M., Iskandarova I., Alexandrov V., Petrusev A., Kirillov I., Strelkova M., Umanski S., Potapkin B.: Comput. Mater. Sci. 28, 169 (2003)

    Article  CAS  Google Scholar 

  19. Dickinson R.P., Gelinas R.J.: J. Comput. Phys. 21, 123 (1976)

    Article  Google Scholar 

  20. Turányi T., Bérces T., Vajda S.: Int. J. Chem. Kinet. 21, 83 (1989)

    Article  Google Scholar 

  21. Whitehouse L.E., Tomlin A.S.: Atmos. Chem. Phys. 4, 2057 (2004)

    Article  CAS  Google Scholar 

  22. Turanyi T.: New J. Chem. 14, 795 (1990)

    CAS  Google Scholar 

  23. Brocka E.E., Savage Ph.E.: Chem. Eng. Sci. 53, 857 (1998)

    Article  Google Scholar 

  24. Glarborg P., Miller J.A.: Combust. Flame 65, 177 (1986)

    Article  CAS  Google Scholar 

  25. Lu T., Law C.K.: Proc. Combust. Inst. 30, 1333 (2005)

    Article  Google Scholar 

  26. Kazakov A., Chaos M.: J. Phys. Chem. 110, 7003 (2006)

    Article  CAS  Google Scholar 

  27. Lam S.H., Goussis D.A.: Int. J. Chem. Kinet. 26, 461 (1994)

    Article  CAS  Google Scholar 

  28. Revel J., Boettner J.C.: J. Chim. Phys. Phys. Chim. Biol. 91, 365 (1994)

    CAS  Google Scholar 

  29. Brown N.J., Li G.: Int. J. Chem. Kinet. 29, 393 (1997)

    Article  CAS  Google Scholar 

  30. A.V. Lebedev, M.V. Okun, Systematic procedure for simplification of kinetic mechanisms of chemical processes (Phys. Chem. Kinet. In Gas Dyn. 10 (2010)), http://www.chemphys.edu.ru/pdf/2010-09-06-001.pdf. Accessed 3 May 2012

  31. I.Gy. Zsély, I. Virág, T. Turányi, in Proceedings of the 4th Mediterranean Combustion Symposium, ed. by F. Beretta, N. Selçuk, M.S. Mansour. (Lisbon, Portugal, 2005), paper IX. 4

  32. A.S. Tomlin, T. Turányi, M.J. Pilling, in Low temperature combustion and autoignition, ed. By M.J. Pilling, G. Hancock. (Elsevier, Amsterdam, 1997), pp. 293–437

  33. Konnov A.A.: Combust. Flame 156, 2093 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lebedev.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 1,237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, A.V., Okun, M.V., Chorkov, V.A. et al. Systematic procedure for reduction of kinetic mechanisms of complex chemical processes and its software implementation. J Math Chem 51, 73–107 (2013). https://doi.org/10.1007/s10910-012-0065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0065-z

Keywords

Navigation